• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 28 Issue 6
Dec.  2015
Turn off MathJax
Article Contents
LIANG Jun, ZHANG Feiyun, CHEN Long, LI Shihao, GU Shengqiang, ZHANG Wanwan. A New Multi-kernel Discriminant Analysis[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1122-1129. doi: 10.3969/j.issn.0258-2724.2015.06.021
Citation: LIANG Jun, ZHANG Feiyun, CHEN Long, LI Shihao, GU Shengqiang, ZHANG Wanwan. A New Multi-kernel Discriminant Analysis[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1122-1129. doi: 10.3969/j.issn.0258-2724.2015.06.021

A New Multi-kernel Discriminant Analysis

doi: 10.3969/j.issn.0258-2724.2015.06.021
  • Received Date: 23 Jul 2014
  • Publish Date: 25 Dec 2015
  • In order to provide effective means for pattern classification and dimension reduction and stem from the advantages of two kinds of multi-kernel namely L1-MKDA and L2-MKDA, a new type of semi-infinite-programming-based flexible multi kernel discriminant analysis method was proposed, which is based on a linear combination of the predefined kernel function, and can utilize mixed norm regularization function to balance the sparsity of kernel weights. It applys semi-infinite programming algorithm to solve the elastic multi-core discriminant analysis, and achieves nuclear self-learning through the mixed regularization. Finally, the experimental results for different data sets demonstrate that the accuracy of the proposed algorithm is 5% better than those of KDA、KDAP、KDAG、L1-MKDA、L2-MKDA and UMKDA.

     

  • loading
  • SCHLKOPF B, SMOLA A J. Learning with kernels: support vector machines, regularization, optimization, and beyond[M]. : MIT Press, 2002: 25-60.
    SHAWE T J, CRISTIANINI N. Kernel methods for pattern analysis[M]. New York: Cambridge University Press, 2004: 286-427.
    LANCKRIET G R G, CRISTIANINI N, BARTLETT P, et al. Learning the kernel matrix with semidefinite programming[J]. The Journal of Machine Learning Research, 2004, 5: 27-72.
    XU Y, ZHANG D, JIN Z, et al. A fast kernel-based nonlinear discriminant analysis for multi-class problems[J]. Pattern Recognition, 2006, 39(6): 1026-1033.
    SZILGYI S M, SZILGYI L. A fast hierarchical clustering algorithm for large-scale protein sequence data sets[J]. Computers in Biology and Medicine, 2014, 48(1): 94-101.
    MIKA S, RTSCH G, MVLLER K R. A mathematical programming approach to the kernel fisher algorithm[C]//Advances in Neural Information Processing Systems. Denver:, 2001: 591-597.
    KIM S J, MAGNANI A, BOYD S. Optimal kernel selection in kernel fisher discriminant analysis[C]//Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 465-472.
    YE J, JI S, CHEN J. Multi-class discriminant kernel learning via convex programming[J]. The Journal of Machine Learning Research, 2008, 9: 719-758.
    KHEMCHANDANI R, CHANDRA S. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming[J]. European Journal of Operational Research, 2010, 203(3): 692-697.
    BACH F R, LANCKRIET G R G, JORDAN M I. Multiple kernel learning, conic duality, and the SMO algorithm[C]//Proceedings of the 21st International Conference on Machine Learning. Banff:, 2004: 41-48.
    SONNENBURG S, RTSCH G, SCHFER C, et al. Large scale multiple kernel learning[J]. The Journal of Machine Learning Research, 2006, 7: 1531-1565.
    刘金,金炜东. 基于类间和类内方差的快速二维阈值分割法[J]. 西南交通大学学报,2014,49(5): 913-919. LIU Jin, JIN Weidong. Fast method for 2D threshold segmentation algorithm based on inter-class and intra-class variances[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 913-919.
    杨本娟,刘本永. 基于核判别分析与证据理论的图像伪作分层融合检测[J]. 科学技术与工程,2014,32(1): 63-67. YANG Benjuan, LIU Benyong. Image forgery detection based on kernel discriminant analysis and evidence theory[J]. Science Technology and Engineering, 2014, 32(1): 63-67.
    LIANG Z, LI Y. Multiple kernels for generalised discriminant analysis[J]. IET Computer Vision, 2010, 4(2): 117-128.
    LIN Y Y, LIU T L, FUH C S. Multiple kernel learning for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1147-1160.
    OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 24(7): 971-987.
    SHANG Fanhua, JIAO L C, LIU Yuanyuan, et al. Semi-supervised learning with nuclear norm regularization[J]. Pattern Recognition, 2013, 46(8): 2323-2336.
    GOPI V P, PALANISAMY P, WAHID K A, et al. Multiple regularization based MRI reconstruction[J]. Signal Processing, 2014, 103: 103-113.
    BUCAK S S, JIN R, JAIN A K. Multiple kernel learning for visual object recognition: a review[J]. Pattern Analysis and Machine Intelligence, 2014, 36(7): 1354-1369.
    贾真,何大可,尹红风,等. 基于无监督学习的部分-整体关系获取[J]. 西南交通大学学报,2014,49(4): 590-596. JIA Zhen, HE Dake, YIN Hongfen, et al. Acquisition of part-whole relations based on unsupervised learning[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 590-596.
    YAN F, KITTLER J, MIKOLAJCZYK K, et al. Non-sparse multiple kernel Fisher discriminant analysis[J]. The Journal of Machine Learning Research, 2012, 13(1): 607-642.
    YAN F, MIKOLAJCZYK K, BARNARD M, et al. Lp norm multiple kernel Fisher discriminant analysis for object and image categorisation[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco: IEEE, 2010: 3626-3632.
    YANG H, XU Z, YE J, et al. Efficient sparse generalized multiple kernel learning[J]. IEEE Transactions on Neural Networks, 2011, 22(3): 433-446.
    SUN D, ZHANG D. A new discriminant principal component analysis method with partial supervision[J]. Neural Processing Letters, 2009, 30(2): 103-112.
    CHEN X, YANG J, LIANG J. Optimal locality regularized least squares support vector machine via alternating optimization[J]. Neural Processing Letters, 2011, 33(3): 301-315.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(646) PDF downloads(241) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return