Citation: | LIANG Jun, ZHANG Feiyun, CHEN Long, LI Shihao, GU Shengqiang, ZHANG Wanwan. A New Multi-kernel Discriminant Analysis[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1122-1129. doi: 10.3969/j.issn.0258-2724.2015.06.021 |
SCHLKOPF B, SMOLA A J. Learning with kernels: support vector machines, regularization, optimization, and beyond[M]. : MIT Press, 2002: 25-60.
|
SHAWE T J, CRISTIANINI N. Kernel methods for pattern analysis[M]. New York: Cambridge University Press, 2004: 286-427.
|
LANCKRIET G R G, CRISTIANINI N, BARTLETT P, et al. Learning the kernel matrix with semidefinite programming[J]. The Journal of Machine Learning Research, 2004, 5: 27-72.
|
XU Y, ZHANG D, JIN Z, et al. A fast kernel-based nonlinear discriminant analysis for multi-class problems[J]. Pattern Recognition, 2006, 39(6): 1026-1033.
|
SZILGYI S M, SZILGYI L. A fast hierarchical clustering algorithm for large-scale protein sequence data sets[J]. Computers in Biology and Medicine, 2014, 48(1): 94-101.
|
MIKA S, RTSCH G, MVLLER K R. A mathematical programming approach to the kernel fisher algorithm[C]//Advances in Neural Information Processing Systems. Denver:, 2001: 591-597.
|
KIM S J, MAGNANI A, BOYD S. Optimal kernel selection in kernel fisher discriminant analysis[C]//Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 465-472.
|
YE J, JI S, CHEN J. Multi-class discriminant kernel learning via convex programming[J]. The Journal of Machine Learning Research, 2008, 9: 719-758.
|
KHEMCHANDANI R, CHANDRA S. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming[J]. European Journal of Operational Research, 2010, 203(3): 692-697.
|
BACH F R, LANCKRIET G R G, JORDAN M I. Multiple kernel learning, conic duality, and the SMO algorithm[C]//Proceedings of the 21st International Conference on Machine Learning. Banff:, 2004: 41-48.
|
SONNENBURG S, RTSCH G, SCHFER C, et al. Large scale multiple kernel learning[J]. The Journal of Machine Learning Research, 2006, 7: 1531-1565.
|
刘金,金炜东. 基于类间和类内方差的快速二维阈值分割法[J]. 西南交通大学学报,2014,49(5): 913-919. LIU Jin, JIN Weidong. Fast method for 2D threshold segmentation algorithm based on inter-class and intra-class variances[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 913-919.
|
杨本娟,刘本永. 基于核判别分析与证据理论的图像伪作分层融合检测[J]. 科学技术与工程,2014,32(1): 63-67. YANG Benjuan, LIU Benyong. Image forgery detection based on kernel discriminant analysis and evidence theory[J]. Science Technology and Engineering, 2014, 32(1): 63-67.
|
LIANG Z, LI Y. Multiple kernels for generalised discriminant analysis[J]. IET Computer Vision, 2010, 4(2): 117-128.
|
LIN Y Y, LIU T L, FUH C S. Multiple kernel learning for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1147-1160.
|
OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 24(7): 971-987.
|
SHANG Fanhua, JIAO L C, LIU Yuanyuan, et al. Semi-supervised learning with nuclear norm regularization[J]. Pattern Recognition, 2013, 46(8): 2323-2336.
|
GOPI V P, PALANISAMY P, WAHID K A, et al. Multiple regularization based MRI reconstruction[J]. Signal Processing, 2014, 103: 103-113.
|
BUCAK S S, JIN R, JAIN A K. Multiple kernel learning for visual object recognition: a review[J]. Pattern Analysis and Machine Intelligence, 2014, 36(7): 1354-1369.
|
贾真,何大可,尹红风,等. 基于无监督学习的部分-整体关系获取[J]. 西南交通大学学报,2014,49(4): 590-596. JIA Zhen, HE Dake, YIN Hongfen, et al. Acquisition of part-whole relations based on unsupervised learning[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 590-596.
|
YAN F, KITTLER J, MIKOLAJCZYK K, et al. Non-sparse multiple kernel Fisher discriminant analysis[J]. The Journal of Machine Learning Research, 2012, 13(1): 607-642.
|
YAN F, MIKOLAJCZYK K, BARNARD M, et al. Lp norm multiple kernel Fisher discriminant analysis for object and image categorisation[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco: IEEE, 2010: 3626-3632.
|
YANG H, XU Z, YE J, et al. Efficient sparse generalized multiple kernel learning[J]. IEEE Transactions on Neural Networks, 2011, 22(3): 433-446.
|
SUN D, ZHANG D. A new discriminant principal component analysis method with partial supervision[J]. Neural Processing Letters, 2009, 30(2): 103-112.
|
CHEN X, YANG J, LIANG J. Optimal locality regularized least squares support vector machine via alternating optimization[J]. Neural Processing Letters, 2011, 33(3): 301-315.
|