• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 28 Issue 5
Oct.  2015
Turn off MathJax
Article Contents
TAN Ping, LIU Liangkun, LI Xiangxiu, ZHANG Ying, ZHOU Fulin. Frequency-Domain Reliability Analysis of Tuned Mass Damper System by First-Passage Theory[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 886-890,941. doi: 10.3969/j.issn.0258-2724.2015.05.018
Citation: TAN Ping, LIU Liangkun, LI Xiangxiu, ZHANG Ying, ZHOU Fulin. Frequency-Domain Reliability Analysis of Tuned Mass Damper System by First-Passage Theory[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 886-890,941. doi: 10.3969/j.issn.0258-2724.2015.05.018

Frequency-Domain Reliability Analysis of Tuned Mass Damper System by First-Passage Theory

doi: 10.3969/j.issn.0258-2724.2015.05.018
  • Received Date: 30 Jul 2014
  • Publish Date: 25 Oct 2015
  • In order to investigate the frequency-domain characteristic of reliability and the damping performance of a tuned mass damper (TMD) system, the probability distribution formula about the spectral moment of cut-off frequency of a structure under random excitations is derived based on the first-passage failure criterion, and the frequency-domain probability density is solved using the forward difference scheme. Then, the frequency-domain probability information of the TMD system is also analyzed by the above method. The results show that the frequency-domain probability density is negative, and the frequency-domain probability tends to the value calculated by the first-passage failure criterion as the frequency band increases. For a structure without control, the percentage of the reliability reduction at the first two mode frequencies are 59.23% and 35.45%, respectively, while counterparts of the TMD system are 34.54% and 55.92%. The frequency-domain reliability analysis reveals that the TMD system has a reliable damping effect, mainly by controlling the first mode vibration of the structure.

     

  • loading
  • 朱位秋. 随机振动
    [M]. 北京:人民交通出版社,1990: 474-502.
    李桂青,李秋胜. 工程结构时变可靠度理论及其应用
    陈颖,王东升,朱长春. 随机结构在随机荷载下的动力可靠度分析
    [M]. 北京:科学出版社,2001: 152-170:
    CHAUDHURI A, CHAKRABORT S. Reliability of linear structure with parameter uncertainty under non-stationary earthquake
    张义民,贺向东,刘巧伶,等. 任意分布参数的梁结构刚度可靠性灵敏度分析
    [J]. 工程力学,2006,23(10): 82-85. CHEN Ying, WANG Dongsheng, ZHU Changchun. Dynamic reliability analysis of stochastic structures subjected to random loads
    乔红威,吕震宙,关爱锐,等. 平稳随机激励下结构动力可靠度分析的多项式逼近法
    乔红威,吕震宙. 平稳随机激励下随机结构动力可靠性分析
    [J]. Engineering Mechanics, 2006, 23(10): 82-85.
    BAROTH J, BODE L, BRESSOLETTE P, et al. SFE method using Hermite polynomials: an approach for solving nonlinear mechanical problems with uncertain parameters
    RAHMAN S, XU H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics
    [J]. Structure Safety, 2005, 28: 231-246.
    陈建兵,李杰. 复合随机振动系统的动力可靠度分析
    [J]. 计算力学学报,2007,24(6): 785-789. ZHANG Yimin, HE Xiangdong, LIU Qiaoling, et al. Stiffness reliability-based sensitivity analysis of beam structure with arbitrary distribution parameters
    李杰,陈建兵. 随机结构动力反应分析的概率密度演化方法
    陈建兵,李杰. 非线性随机结构动力可靠度的密度演化方法
    [J]. Chinese Journal of Computational Mechanics, 2007, 24(6): 785-789.
    彭勇波,李杰. 非线性随机振动分析的概率密度演化方法
    林家浩,张亚辉. 随机振动的虚拟激励法
    [J]. 工程力学,2009,26(2): 60-64. QIAO Hongwei, L Zhenzhou, GUAN Airui, et al. Dynamic reliability analysis of stochastic structures under stationary excitation using Hermite polynomials approximation
    [J]. Engineering Mechanics, 2009, 26(2): 60-64.
    张治勇,孙柏涛,宋天舒. 新抗震规范地震动功率谱模型参数的研究
    DEN HARTOG J P. Mechanical vibrations
    [C]//2007年第九届全国振动理论及应用学术会议. 杭州:
    [s. n], 2007: 57-62.
    [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44): 6479-6501.
    [J]. Probabilistic Engineering Mechanics, 2004, 19(4): 393-408.
    [J]. 工程力学,2005,22(3): 52-57.
    [DW]CHEN Jianbing, LI Jie. Dynamic reliability assessment of double random vibration systems
    [J]. Engineering Mechanics, 2005, 22(3): 52-57.
    [J]. 力学学报,2003,35(4): 437-442.
    LI Jie, CHEN Jianbing. Probability density evolution method for analysis of structure dynamic response
    [J]. Acta Mechanica Sinica, 2003, 35(4): 437-442.
    [J]. 力学学报,2004,36(2): 196-201.
    CHEN Jianbing, LI Jie. The probability density evolution method for dynamic reliability assessment of nonlinear stochastic structure
    [J]. Acta Mechanica Sinica, 2004, 36(2): 196-201.
    [J]. 西南交通大学学报,2014,49(2): 220-226.
    PENG Yongbo, LI Jie. Probability density evolution method of nonlinear random vibration analysis
    [J]. Journal of Southwest Jiaotong University, 2014, 49(2): 220-226.
    [M]. 北京:科学出版社,2004: 42-54.
    [J]. 世界地震工程,2000,16(3): 33-38.
    ZHANG Zhiyong, SUN Baitao, SONG Tianshu. Study on the parameters of seismic power spectrum model based on the new seismic code
    [J]. World Information on Earthquake Engineering, 2000, 16(3): 33-38.
    [M]. 4th ed. New York: McGraw Hill, 1956: 51-55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(818) PDF downloads(309) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return