• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LI Qunzhan. On New Generation Traction Power Supply System and Its Key Technologies for Electrification Railway[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001
Citation: HUANG Haibo, LI Renxian, YANG Qi, DING Weiping, YANG Mingliang. Identifying Abnormal Noise of Vehicle Suspension Shock Absorber Based on Deep Belief Networks[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002

Identifying Abnormal Noise of Vehicle Suspension Shock Absorber Based on Deep Belief Networks

doi: 10.3969/j.issn.0258-2724.2015.05.002
  • Received Date: 02 Sep 2014
  • Publish Date: 25 Oct 2015
  • Considering the complexity and non-expandability of extracting abnormal noise features of shock absorbers by experience and manual work, applications of deep belief networks (DBNs) to identification of vehicle suspension shock absorber's abnormal noise are discussed, and a complete identification process of shock absorber abnormal noise is proposed by combining the shock absorber's road test with its rig test. The method only needs to take the vibration acceleration signal of the shock absorber piston rod as input, and then process the signal by learning layer-wise features in the DBNs model to classify the sounds of shock absorbers. In addition, the identification accuracy by DBNs is compared with that by the classical BP neural network, support vector machine, and other three traditional abnormal noise identification methods. The results show that when only the original signal is used as input, the classification accuracy by DBNs is 96.7%, which is higher than that by the other five methods. This illustrates the superiority of the DBNs algorithm in identifying the abnormal noise of shock absorbers and may imply a wide prospect in engineering application.

     

  • 舒红宇,王立勇,吴碧华,等. 液力减振器结构异响发生的微过程分析
    [J]. 振动工程学报,2005,18(3): 282-287. SHU Hongyu, WANG Liyong, WU Bihua, et al. Analysis on the abnormal structure noise yielding processofhydraulic shock absorber
    BENAZIZ M, NACIVET S, DEAK J, et al. Double tube shock absorber model for noise and vibration analysis
    [J]. Journal of Vibration Engineering, 2005, 18(3): 282-287.
    宋睿. 汽车双筒式减振器异响的产生机理与控制方法研究
    么鸣涛,顾亮,管继富. 双筒式减振器异响试验分析
    [J]. SAE International Journal of Passenger Cars Mechanical Systems, 2013, 6(2): 1177-1185.
    丁渭平. 汽车底盘系统NVH及异响控制技术研究
    黄海波,李人宪,丁渭平,等. 基于台架试验的悬架减振器异响辨识研究
    余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天
    [D]. 成都:西南交通大学,2012.
    张建平,胡明华,吴振亚,等. 基于BP网络的空中交通管制运行品质评价
    [J]. 工程设计学报,2010,17(3): 229-235. YAO Mingtao, GU Liang, GUAN Jifu. Test analysis on the noise of automobile shock absorber
    吴志周,范宇杰,马万经. 基于灰色神经网络的点速度预测模型
    [J]. Journal of Engineering Design, 2010, 17(3): 229-235.
    YOON J, YANG I, JEONG J, et al. Reliability improvement of a sound quality index for a vehicle HVAC systemusing a regression and neural network model
    秦娜,金炜东,黄进,等. 基于EEMD样本熵的高速列车转向架故障特征提取
    HINTON G E, SALAKHUTDINOV R. Reducing the dimensionality of data with neural network
    [C]//汽车NVH控制技术国际研讨会. 成都:
    BENGIO Y. Learning deep architectures for AI
    [s.n.],2013: 93-106.
    AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning: a new frontier in artificial intelligence research
    [J]. 振动与冲击,2015,34(2): 191-196. HUANG Haibo, LI Renxian, DING Weiping, et al. Rig test for identifying abnormal noise of suspension shock absorber
    HINTON G E. Training products of experts by minimizing contrastive divergence
    GRAVES A, MOHAMED A R, HINTON G E. Speech recognition with deep recurrent neura inetworks
    [J]. Journal of Vibration and Shock, 2015, 34(2): 191-196.
    HINTON G E. Training products of experts by minimizing contrastive divergence
    [J]. 计算机研究与发展,2013,50(9): 1799-1804. YU Kai, JIA Lei, CHEN Yuqiang, et al. Deep learning: yesterday, today, and tomorrow
    [J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
    [J]. 西南交通大学学报,2013,48(3): 553-558. ZHANG Jianping, HU Minghua, WU Zhenya, et al. An improved integrated evaluation method on operation performance of air traffic control based on BP network
    [J]. Journal of Southwest Jiaotong University, 2013, 48(3): 553-558.
    [J]. 西南交通大学学报,2012,47(2): 285-290. WU Zhizhou, FAN Yujue, MA Wanjing. Spot speed prediction model based on grey neural network
    [J]. Journal of Southwest Jiaotong University, 2012, 47(2): 285-290.
    [J]. Applied Acoustics, 2012, 73: 1099-1103.
    [J]. 西南交通大学学报,2014,49(1): 27-32. QIN Na, JIN Weidong, HUANG Jin, et al. Feature extraction of high speed train bogie based on ensemble empirical mode decomposition and sample entropy
    [J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.
    [J]. Science, 2006, 313: 504-507.
    [J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127.
    [J]. IEEE Computational Intelligence Magazine, 2010, 5(4): 13-18.
    [J]. Neural Computation, 2002, 14(8): 1771-1880.
    [C]//Acoustics, Speech and Signal Processing (ICASSP), IEEE International Conference. Santa Clara:
    [s. n.]2013: 6645-6649.
    [J]. Neural Computation, 2002, 14(8): 1771-1880.
  • Relative Articles

    [1]LI Linchao, ZHONG Liangjian, SU Qing, REN Lu, DU Bowen. Fine Urban Land Use Identification Based on Fusion of Multi-source Data[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230296
    [2]ZHANG Hong, JIANG Xiaogang, ZHU Zhiwei, XIA Runchuan, ZHOU Jianting. Review on Intelligent Image Recognition of Apparent Diseases of Stay Cable[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 10-26. doi: 10.3969/j.issn.0258-2724.20220647
    [3]YANG Yanchun, YAN Yan, WANG Ke. Infrared and Visible Image Fusion Based on Attention Mechanism and Illumination-Aware Network[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1204-1214. doi: 10.3969/j.issn.0258-2724.20230529
    [4]WANG Yiran, YU Xiaodong, LIU Jiachun, ZHANG Jian, XU Hui. Multiple-Mode Transient Inflow Impact with Entrapped Air Pocket in Deep Storage Tunnel Systems[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 685-690. doi: 10.3969/j.issn.0258-2724.20211053
    [5]YUE Chuan, WANG Lide, YAN Haipeng. Attack-Sample Generation Method for Train Communication Network Under Few-Shot Condition[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1277-1285. doi: 10.3969/j.issn.0258-2724.20210557
    [6]WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
    [7]XIA Ying, LIU Min. Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 340-347. doi: 10.3969/j.issn.0258-2724.20210526
    [8]WANG Yin, WANG Lide, QIU Ji. Real-Time Enhancement Algorithm Based on DenseNet Structure for Railroad Low-Light Environment[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1349-1357. doi: 10.3969/j.issn.0258-2724.20210199
    [9]ZHANG Jiangquan, GAO Hongli, XIANG Shoubing, GUO Liang, TAN Yongwen. Intelligent Evaluation Method for Ball Screw Degradation State[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 813-820. doi: 10.3969/j.issn.0258-2724.20220082
    [10]PENG Bo, TANG Ju, ZHANG Yuanyuan, CAI Xiaoyu, MENG Fanhe. Automatic Traffic State Recognition from Road Videos Based on 3D Convolution Neural Network[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 153-159. doi: 10.3969/j.issn.0258-2724.20191169
    [11]LI Zechen, LI Hengchao, HU Wenshuai, YANG Jinyu, HUA Zexi. Masked Face Detection Model Based on Multi-scale Attention-Driven Faster R-CNN[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1002-1010. doi: 10.3969/j.issn.0258-2724.20210017
    [12]YUAN Fei, ZHAO Xuyan, WANG Yige, ZHAO Zhisheng. Smoke Recognition Algorithm Based on Lightweight Convolutional Neural Network[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1111-1116, 1132. doi: 10.3969/j.issn.0258-2724.20190777
    [13]TIAN Sheng, ZHANG Jianfeng, ZHANG Yutian, XU Kai. Lane Detection Algorithm Based on Dilated Convolution Pyramid Network[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 386-392, 416. doi: 10.3969/j.issn.0258-2724.20181026
    [14]QIU Dongwei, WANG Tong, DUAN Mingxu, LUO Dean, WANG Laiyang. Construct and Application of LM-CDBN Deformation Prediction Model for Supertall Buildings[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 310-316. doi: 10.3969/j.issn.0258-2724.20180293
    [15]YANG Gang, LI Hengchao, TAN Bei, SHI Chaoqun, ZHANG Xueqin, GUO Yujun, WU Guangning. Application of Hierarchical Extreme Learning Machine in Prediction of Insulator Pollution Degree Using Hyperspectral Images[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 579-587. doi: 10.3969/j.issn.0258-2724.20190093
    [16]XIANG Yu, CONG Deming, ZHANG Yang, YUAN Fei. Two-Stream Neural Network Fusion Model for Highway Fog Detection[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 173-179. doi: 10.3969/j.issn.0258-2724.20180205
    [17]HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164
    [18]LUO Yun, CHENKang, JINDing-chang. Influence of Damping Characteristics of Dampers on Dynamic Performances of Four-Axle Power Cars[J]. Journal of Southwest Jiaotong University, 2004, 17(5): 648-652.
  • Cited by

    Periodical cited type(13)

    1. 黄海波,郑志伟,张思文,吴昱东,杨明亮,丁渭平. 面向多层级目标的汽车前围声学包优化研究. 西南交通大学学报. 2023(02): 287-295 . 本站查看
    2. 赵卫东,徐鑫蔚,宋睿,杨明亮. 汽车异响噪声源定位方法研究进展与展望. 重庆理工大学学报(自然科学). 2022(10): 73-83 .
    3. 徐文博,任亚峰,韩冰. 一种基于深度学习理论的齿轮系统故障诊断方法. 机械传动. 2020(08): 78-83 .
    4. 税永波,黄海波,丁渭平. 基于广义逆推算法的液压减振器抗异响设计. 液压与气动. 2019(01): 59-64 .
    5. 陈超宇,陈磊,张旺,韩捷. 全矢深度学习在轴承故障诊断中的应用. 机械传动. 2019(01): 144-149 .
    6. 胡俊平,张楠. 面向船舶的MR减振相关技术. 舰船科学技术. 2019(08): 7-9 .
    7. 杨任农,张振兴,房育寰,左家亮,张彬超. 深度置信网络在导弹攻击区分类中的应用. 国防科技大学学报. 2019(02): 98-106 .
    8. 车畅畅,王华伟,刘伟. 基于深度信念网络的航空发动机维修等级决策. 航空动力学报. 2018(06): 1528-1536 .
    9. 冯平. 混合动力汽车左轮制动器故障检测仿真. 计算机仿真. 2018(01): 121-125 .
    10. 张绍辉,罗洁思. 基于频谱包络曲线的稀疏自编码算法及在齿轮箱故障诊断的应用. 振动与冲击. 2018(04): 249-256 .
    11. 张彬超,寇雅楠,邬蒙,左家亮. 基于深度置信网络的近距空战态势评估. 北京航空航天大学学报. 2017(07): 1450-1459 .
    12. 刘云龙,谢寿生,郑晓飞,边涛. 基于深度学习的航空发动机传感器故障检测. 传感器与微系统. 2017(09): 147-150 .
    13. 张绍辉. 集成参数自适应调整及隐含层降噪的深层RBM算法. 自动化学报. 2017(05): 855-865 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.8 %FULLTEXT: 32.8 %META: 67.2 %META: 67.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.5 %其他: 2.5 %北京: 1.2 %北京: 1.2 %南京: 1.2 %南京: 1.2 %哥伦布: 0.6 %哥伦布: 0.6 %张家口: 4.9 %张家口: 4.9 %杭州: 1.8 %杭州: 1.8 %池州: 0.6 %池州: 0.6 %清远: 0.3 %清远: 0.3 %湛江: 0.3 %湛江: 0.3 %漯河: 0.3 %漯河: 0.3 %芒廷维尤: 22.7 %芒廷维尤: 22.7 %芝加哥: 0.9 %芝加哥: 0.9 %西宁: 62.0 %西宁: 62.0 %重庆: 0.3 %重庆: 0.3 %长沙: 0.3 %长沙: 0.3 %其他北京南京哥伦布张家口杭州池州清远湛江漯河芒廷维尤芝加哥西宁重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(897) PDF downloads(470) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return