• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 28 Issue 5
Oct.  2015
Turn off MathJax
Article Contents
HUANG Haibo, LI Renxian, YANG Qi, DING Weiping, YANG Mingliang. Identifying Abnormal Noise of Vehicle Suspension Shock Absorber Based on Deep Belief Networks[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002
Citation: HUANG Haibo, LI Renxian, YANG Qi, DING Weiping, YANG Mingliang. Identifying Abnormal Noise of Vehicle Suspension Shock Absorber Based on Deep Belief Networks[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002

Identifying Abnormal Noise of Vehicle Suspension Shock Absorber Based on Deep Belief Networks

doi: 10.3969/j.issn.0258-2724.2015.05.002
  • Received Date: 02 Sep 2014
  • Publish Date: 25 Oct 2015
  • Considering the complexity and non-expandability of extracting abnormal noise features of shock absorbers by experience and manual work, applications of deep belief networks (DBNs) to identification of vehicle suspension shock absorber's abnormal noise are discussed, and a complete identification process of shock absorber abnormal noise is proposed by combining the shock absorber's road test with its rig test. The method only needs to take the vibration acceleration signal of the shock absorber piston rod as input, and then process the signal by learning layer-wise features in the DBNs model to classify the sounds of shock absorbers. In addition, the identification accuracy by DBNs is compared with that by the classical BP neural network, support vector machine, and other three traditional abnormal noise identification methods. The results show that when only the original signal is used as input, the classification accuracy by DBNs is 96.7%, which is higher than that by the other five methods. This illustrates the superiority of the DBNs algorithm in identifying the abnormal noise of shock absorbers and may imply a wide prospect in engineering application.

     

  • loading
  • 舒红宇,王立勇,吴碧华,等. 液力减振器结构异响发生的微过程分析
    [J]. 振动工程学报,2005,18(3): 282-287. SHU Hongyu, WANG Liyong, WU Bihua, et al. Analysis on the abnormal structure noise yielding processofhydraulic shock absorber
    BENAZIZ M, NACIVET S, DEAK J, et al. Double tube shock absorber model for noise and vibration analysis
    [J]. Journal of Vibration Engineering, 2005, 18(3): 282-287.
    宋睿. 汽车双筒式减振器异响的产生机理与控制方法研究
    么鸣涛,顾亮,管继富. 双筒式减振器异响试验分析
    [J]. SAE International Journal of Passenger Cars Mechanical Systems, 2013, 6(2): 1177-1185.
    丁渭平. 汽车底盘系统NVH及异响控制技术研究
    黄海波,李人宪,丁渭平,等. 基于台架试验的悬架减振器异响辨识研究
    余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天
    [D]. 成都:西南交通大学,2012.
    张建平,胡明华,吴振亚,等. 基于BP网络的空中交通管制运行品质评价
    [J]. 工程设计学报,2010,17(3): 229-235. YAO Mingtao, GU Liang, GUAN Jifu. Test analysis on the noise of automobile shock absorber
    吴志周,范宇杰,马万经. 基于灰色神经网络的点速度预测模型
    [J]. Journal of Engineering Design, 2010, 17(3): 229-235.
    YOON J, YANG I, JEONG J, et al. Reliability improvement of a sound quality index for a vehicle HVAC systemusing a regression and neural network model
    秦娜,金炜东,黄进,等. 基于EEMD样本熵的高速列车转向架故障特征提取
    HINTON G E, SALAKHUTDINOV R. Reducing the dimensionality of data with neural network
    [C]//汽车NVH控制技术国际研讨会. 成都:
    BENGIO Y. Learning deep architectures for AI
    [s.n.],2013: 93-106.
    AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning: a new frontier in artificial intelligence research
    [J]. 振动与冲击,2015,34(2): 191-196. HUANG Haibo, LI Renxian, DING Weiping, et al. Rig test for identifying abnormal noise of suspension shock absorber
    HINTON G E. Training products of experts by minimizing contrastive divergence
    GRAVES A, MOHAMED A R, HINTON G E. Speech recognition with deep recurrent neura inetworks
    [J]. Journal of Vibration and Shock, 2015, 34(2): 191-196.
    HINTON G E. Training products of experts by minimizing contrastive divergence
    [J]. 计算机研究与发展,2013,50(9): 1799-1804. YU Kai, JIA Lei, CHEN Yuqiang, et al. Deep learning: yesterday, today, and tomorrow
    [J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
    [J]. 西南交通大学学报,2013,48(3): 553-558. ZHANG Jianping, HU Minghua, WU Zhenya, et al. An improved integrated evaluation method on operation performance of air traffic control based on BP network
    [J]. Journal of Southwest Jiaotong University, 2013, 48(3): 553-558.
    [J]. 西南交通大学学报,2012,47(2): 285-290. WU Zhizhou, FAN Yujue, MA Wanjing. Spot speed prediction model based on grey neural network
    [J]. Journal of Southwest Jiaotong University, 2012, 47(2): 285-290.
    [J]. Applied Acoustics, 2012, 73: 1099-1103.
    [J]. 西南交通大学学报,2014,49(1): 27-32. QIN Na, JIN Weidong, HUANG Jin, et al. Feature extraction of high speed train bogie based on ensemble empirical mode decomposition and sample entropy
    [J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.
    [J]. Science, 2006, 313: 504-507.
    [J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127.
    [J]. IEEE Computational Intelligence Magazine, 2010, 5(4): 13-18.
    [J]. Neural Computation, 2002, 14(8): 1771-1880.
    [C]//Acoustics, Speech and Signal Processing (ICASSP), IEEE International Conference. Santa Clara:
    [s. n.]2013: 6645-6649.
    [J]. Neural Computation, 2002, 14(8): 1771-1880.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(853) PDF downloads(470) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return