Citation: | HUANG Haibo, LI Renxian, YANG Qi, DING Weiping, YANG Mingliang. Identifying Abnormal Noise of Vehicle Suspension Shock Absorber Based on Deep Belief Networks[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002 |
舒红宇,王立勇,吴碧华,等. 液力减振器结构异响发生的微过程分析
|
[J]. 振动工程学报,2005,18(3): 282-287. SHU Hongyu, WANG Liyong, WU Bihua, et al. Analysis on the abnormal structure noise yielding processofhydraulic shock absorber
|
BENAZIZ M, NACIVET S, DEAK J, et al. Double tube shock absorber model for noise and vibration analysis
|
[J]. Journal of Vibration Engineering, 2005, 18(3): 282-287.
|
宋睿. 汽车双筒式减振器异响的产生机理与控制方法研究
|
么鸣涛,顾亮,管继富. 双筒式减振器异响试验分析
|
[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2013, 6(2): 1177-1185.
|
丁渭平. 汽车底盘系统NVH及异响控制技术研究
|
黄海波,李人宪,丁渭平,等. 基于台架试验的悬架减振器异响辨识研究
|
余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天
|
[D]. 成都:西南交通大学,2012.
|
张建平,胡明华,吴振亚,等. 基于BP网络的空中交通管制运行品质评价
|
[J]. 工程设计学报,2010,17(3): 229-235. YAO Mingtao, GU Liang, GUAN Jifu. Test analysis on the noise of automobile shock absorber
|
吴志周,范宇杰,马万经. 基于灰色神经网络的点速度预测模型
|
[J]. Journal of Engineering Design, 2010, 17(3): 229-235.
|
YOON J, YANG I, JEONG J, et al. Reliability improvement of a sound quality index for a vehicle HVAC systemusing a regression and neural network model
|
秦娜,金炜东,黄进,等. 基于EEMD样本熵的高速列车转向架故障特征提取
|
HINTON G E, SALAKHUTDINOV R. Reducing the dimensionality of data with neural network
|
[C]//汽车NVH控制技术国际研讨会. 成都:
|
BENGIO Y. Learning deep architectures for AI
|
[s.n.],2013: 93-106.
|
AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning: a new frontier in artificial intelligence research
|
[J]. 振动与冲击,2015,34(2): 191-196. HUANG Haibo, LI Renxian, DING Weiping, et al. Rig test for identifying abnormal noise of suspension shock absorber
|
HINTON G E. Training products of experts by minimizing contrastive divergence
|
GRAVES A, MOHAMED A R, HINTON G E. Speech recognition with deep recurrent neura inetworks
|
[J]. Journal of Vibration and Shock, 2015, 34(2): 191-196.
|
HINTON G E. Training products of experts by minimizing contrastive divergence
|
[J]. 计算机研究与发展,2013,50(9): 1799-1804. YU Kai, JIA Lei, CHEN Yuqiang, et al. Deep learning: yesterday, today, and tomorrow
|
[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
|
[J]. 西南交通大学学报,2013,48(3): 553-558. ZHANG Jianping, HU Minghua, WU Zhenya, et al. An improved integrated evaluation method on operation performance of air traffic control based on BP network
|
[J]. Journal of Southwest Jiaotong University, 2013, 48(3): 553-558.
|
[J]. 西南交通大学学报,2012,47(2): 285-290. WU Zhizhou, FAN Yujue, MA Wanjing. Spot speed prediction model based on grey neural network
|
[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 285-290.
|
[J]. Applied Acoustics, 2012, 73: 1099-1103.
|
[J]. 西南交通大学学报,2014,49(1): 27-32. QIN Na, JIN Weidong, HUANG Jin, et al. Feature extraction of high speed train bogie based on ensemble empirical mode decomposition and sample entropy
|
[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.
|
[J]. Science, 2006, 313: 504-507.
|
[J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127.
|
[J]. IEEE Computational Intelligence Magazine, 2010, 5(4): 13-18.
|
[J]. Neural Computation, 2002, 14(8): 1771-1880.
|
[C]//Acoustics, Speech and Signal Processing (ICASSP), IEEE International Conference. Santa Clara:
|
[s. n.]2013: 6645-6649.
|
[J]. Neural Computation, 2002, 14(8): 1771-1880.
|