• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 6
Dec.  2014
Turn off MathJax
Article Contents
BAI Bing, LI Qiao, ZHANG Qinghua. Support Vector Classification Algorithm by Migration Sampling for Structural System Reliability Evaluation[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 987-994. doi: 10.3969/j.issn.0258-2724.2014.06.009
Citation: BAI Bing, LI Qiao, ZHANG Qinghua. Support Vector Classification Algorithm by Migration Sampling for Structural System Reliability Evaluation[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 987-994. doi: 10.3969/j.issn.0258-2724.2014.06.009

Support Vector Classification Algorithm by Migration Sampling for Structural System Reliability Evaluation

doi: 10.3969/j.issn.0258-2724.2014.06.009
  • Received Date: 17 Mar 2014
  • Publish Date: 25 Dec 2014
  • In order to avoid the cumbersome bounding operation during system reliability evaluation procedures, a concept of system limit state surface was introduced on account of the characteristic of system multi-failure modes. Employing the support vector classification (SVC) algorithm to divide the security domain and failure domain, reconstitution of the system limit state surface could be achieved. On this basis, a migration sampling strategy using Latin hypercube sampling (LHS) was combined together with the SVC algorithm, finally leading to a new system reliability evaluation method of SVC migration sampling. Two widely used illustrative examples were introduced and analyzed by different methods for comparison. The results show that the SVC migration sampling algorithm possesses good sampling efficiency as well as superior convergence property. Compared with traditional Monte Carlo sampling methods, the algorithm presented can reduce sampling times by 87%with a relative error of less than 1%. The gross assumption of component failure state by β-unzipping method can also be avoided, which is more suitable for practical application to actual structure assessment.

     

  • loading
  • 刘扬.混凝土斜拉桥施工期的时变可靠性研究[D]. 长沙:湖南大学,2005.
    MOSES F. System reliability developments in structural engineering[J]. Structural Safety, 1982, 1(1): 3-13.
    THOFT-CHRISTENSEN P, MUROTRU Y. Application of structural systems reliability theory[M]. Berlin: Springer-Verlag, 1986: 164-166, 222-232.
    董聪. 现代结构系统可靠性理论及其应用[M]. 北京:科学出版社,2001: 144-154,200-204.
    DITLEVSEN O. Narrow reliability bounds for structural systems[J]. Journal of Structural Mechanics, 1979, 7(4): 453 -472.
    GOLLWITZER S, RACKWITZ R. Equivalent components in first-order system reliability[J]. Reliability Engineering, 1983, 5(2): 99-115.
    张小庆. 结构体系可靠度分析方法研究[D]. 大连:大连理工大学,2003.
    张晶. 结构体系失效概率计算方法研究[D]. 大连:大连理工大学,2010.
    张清华. 大跨度钢斜拉桥施工全过程时变体系多尺度可靠度研究报告 50908192. 成都:西南交通大学,2013.
    白冰,张清华,李乔. 结构二次二阶矩可靠度指标的回归分析预测算法[J]. 工程力学,2013,30(10): 219-226. BAI Bing, ZHANG Qinghua, LI Qiao. Regression analysis-prediction algorithm for structural second-order second-moment reliability index evaluation[J]. Engineering Mechanics, 2013, 30(10): 219-226.
    董聪,夏人伟. 现代结构系统可靠性评估理论研究进展[J]. 力学进展,1995,25(4): 537-548. DONG Cong, XIA Renwei. Advances in the modern reliability evaluation theory of structural systems[J]. Advances in Mechanics, 1995, 25(4): 537-548.
    CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Beijing: China Machine Press, 2005: 93-114.
    CHEN K Y. Forecasting systems reliability based on support vector regression with genetic algorithms[J]. Reliability Engineering and System Safety, 2007, 92(4): 423-432.
    金伟良,唐纯喜,陈进. 基于SVM的结构可靠度分析响应面方法[J].计算力学学报,2007,24(6): 713-718. JIN Weiliang, TANG Chunxi, CHEN Jin. SVM based on response surface method for structural reliability analysis[J]. Chinese Journal of Computational Mechanics, 2007, 24(6): 713-718.
    KEERTHI S S, LIN C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation, 2003, 15(7): 1667-1689.
    RACKWITZ R, FIESSLER B. Structural reliability under combined random load sequences[J]. Computers and Structures, 1978, 9(5): 489-494.
    蒋友宝,冯健,孟少平. 求解结构可靠度指标的线性可行方向算法[J]. 东南大学学报:自然科学版,2006,36(2): 312-315. JIANG Youbao, FENG Jian, MENG Shaoping. Linear feasible direction algorithm for calculation of reliability index of structure[J]. Journal of Southeast University: Natural Science Edition, 2006, 36(2): 312-315.
    亢战,罗阳军. 计算结构可靠度指标的修正迭代算法[J]. 工程力学,2008,25(11): 20-26. KANG Zhan, LUO Yangjun. A modified iteration algorithm for structural reliability index evaluation[J]. Engineering Mechanics, 2008, 25(11): 20-26.
    SCHUËLLER G I, PRADLWARTER H J, KOUTSOURELAKIS P S. A comparative study of reliability estimation procedures for high dimensions[C]//Proceedings of 16th ASCE Engineering Mechanics Conference. Seattle: University of Washington, 2003: 1-10.
    SCHUËLLER G I, PRADLWARTER H J, KOUTSOURELAKIS P S. A critical appraisal of reliability estimation procedures for high dimensions[J]. Probabilistic Engineering Mechanics, 2004, 19(4): 463-474.
    宋述芳,吕震宙,傅霖. 基于线抽样的可靠性灵敏度分析方法[J]. 力学学报,2007,39(4): 564-570. SONG Shufang, LÜ Zhenzhou, FU Lin. Reliability sensitivity algorithm based on line sampling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 564-570.
    赵国藩,金伟良,贡金鑫. 结构可靠度理论[M]. 北京:中国建筑工业出版社,2000: 76-77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(951) PDF downloads(441) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return