• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 4
Jul.  2014
Turn off MathJax
Article Contents
ZHENG Xiaowu, XIE Jianhua. Bifurcation Control of Mechanical System with Periodic Coefficients[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 741-745. doi: 10.3969/j.issn.0258-2724.2014.04.028
Citation: ZHENG Xiaowu, XIE Jianhua. Bifurcation Control of Mechanical System with Periodic Coefficients[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 741-745. doi: 10.3969/j.issn.0258-2724.2014.04.028

Bifurcation Control of Mechanical System with Periodic Coefficients

doi: 10.3969/j.issn.0258-2724.2014.04.028
  • Received Date: 30 Nov 2012
  • Publish Date: 25 Aug 2014
  • In order to control the bifurcation behavior at the equilibrium point of the differential system with periodic coefficients losing its stability, the methods for bifurcation control for the dynamical system with constant coefficients, such as using the linear controller, parameter method, and translation, were applied to a mechanical system with periodic coefficients by the Floquet-Lyapunov theory. Then, the related controllers were designed, and its validity in controlling the bifurcation behavior at the equilibrium point was tested through numerical calculation. The results show that translation is invalid to control the Flip and Hopf bifurcations at the equilibrium point in mechanical system with periodic coefficients. When a 2-periodic point is generated by the period-doubling Flip bifurcation at the unstable equilibrium point, either of the linear controller and the parameter method can be used to control the 2-periodic point back to a 1-periodic point. When a Hopf circle is generated by Hopf bifurcation after the equilibrium point loses its stability, the linear controller and the parameter method are all effective for controlling the Hopf circle to a 1-periodic point.

     

  • loading
  • JUNE Y L, YAN J J. Control of impact oscillator[J]. Chaos, Solitons and Fractals, 2006, 28: 136-142.
    HUBLER A, LUSCHER E. Resonant stimulation of complex systerms[J]. Helvetica Physica Acta, 1989, 62: 544-551.
    胡岗,萧井华,郑志刚. 混沌控制[M]. 上海: 上海科技教育出版社, 2000: 12.
    OTT E, GREBOGI C, YORK J A. Controlling chaos[J]. Physical Review Letters, 1990, 64(11): 1196- 1199.
    唐驾时,欧阳克俭. Logistic模型的倍周期分岔控制[J]. 物理学报,2006,55(9): 437-431. TANG Jianshi, OUYANG Kejian. Controlling the period-doubling bifurcation of logistic mode[J]. Acta Physica Sinica, 2006, 55(9): 437-431.
    于津江,刘学军,韩万强,等. 平移法控制离散系统的倍周期分岔和混沌[J]. 计算物理,2007,24(1): 116-120. YU Jinjiang, LIU Xuejun, HAN Wanqiang, et al. Control period-doubting bifurcation and chaos in a discrete nonlinear system by translation[J]. Chinese Journal of Computational Physics, 2007, 24(1): 116-120.
    罗晓曙,陈关荣,汪秉宏,等. 状态反馈和参数调整控制离散非线性系统的倍周期分岔和混沌[J]. 物理学报,2003,52(4): 790-794. LUO Xiaoshu, CHEN Guanrong, WANG Binghong, et al. Control of period-doubling bifurcation and chaos in a discrete nonlinear system by the feedback of states and parameter adjustment[J]. Acta Physica Sinica, 2003, 52(4): 790-794.
    舒仲周,张继业,曹登庆. 运动稳定性[M]. 北京: 中国铁道出版社, 2001: 15-30.
    SINHA S C, PANDIYAN R. Analysis of quasilinear dynamical systems with periodic coefficients via Liapunov-Floquet transformation[J]. International Journal of Nonlinear Mechanics, 1994, 29(5): 687-702.
    ALEXANDRA D,SINHA S C. Bifurcation control of nonlinear systems with time-periodic coefficients[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125: 541-548.
    SINHA S C, REDKAR S, ERIC A B. Order reduction of nonlinear systems with time periodic coefficients using invariant manifolds[J]. Journal of Sound and Vibration, 2005, 284: 985-1002.
    SINHA S C, GOURDON E, ZHANG Y. Control of time-periodic system via symbolic computation with application to chaos control[J]. Communications in Nonlinear Science and Numerical Simulation, 2005, 10: 835-854.
    郑小武. 两自由度机械臂λ2=1下的Hopf分岔与混沌研究[J]. 应用力学学报,2008,25(2): 312-315. ZHENG Xiaowu. Hopf bifurcation while λ2=1 and chaos of a mechanical system with periodic coefficients[J]. Chinese Journal of Applied Mechanics, 2008, 25(2): 312-315.
    郑小武. 一类周期系数力学系统的Hopf-Flip分岔[J]. 振动工程学报,2007,20(4): 412-416. ZHENG Xiaowu. Hopf-Flip bifurcations of a two-degree-of-freedom mechanical system with periodic coefficients[J]. Journal of Vibration Engineering, 2007, 20(4): 412-416.
    郑小武. 两自由度机械手周期运动的倍周期分岔[J]. 西南交通大学学报,2006,41(3): 396-399. ZHENG Xiaowu. Period-doubling bifurcations of period motion of a two-degree-of-freedom manipulator[J]. Journal of Southwest Jiaotong University, 2006, 41(3): 396-399.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(755) PDF downloads(547) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return