• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 4
Jul.  2014
Turn off MathJax
Article Contents
LIU Chunqiong, SHI Kai, LI Sichuan. Self-Organized Criticality in Process of Aftershocks of Lushan Earthquake[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 668-674. doi: 10.3969/j.issn.0258-2724.2014.04.017
Citation: LIU Chunqiong, SHI Kai, LI Sichuan. Self-Organized Criticality in Process of Aftershocks of Lushan Earthquake[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 668-674. doi: 10.3969/j.issn.0258-2724.2014.04.017

Self-Organized Criticality in Process of Aftershocks of Lushan Earthquake

doi: 10.3969/j.issn.0258-2724.2014.04.017
  • Received Date: 12 Sep 2013
  • Publish Date: 25 Aug 2014
  • The statistical relations of aftershocks following a strong earthquake can give useful information on the dynamical features of seismic processes and the involved geodynamical mechanisms. The sequence of aftershocks of the Lushan Ms7.0 earthquake, occurred on the Longmenshan tectonic zone in Sichuan Province, China, was analyzed. The analyses of magnitude and temporal statistical distributions in the aftershocks sequence described by the Gutenberg-Richter and Omori laws respectively were performed. To provide a possible explanation of these observed distributions, a novel SOC (self-organized criticality) model was developed by introducing stress decay coefficient and anisotropic diffusion factor into the Olami-Feder-Christensen model of earthquakes, and the self-organized criticality properties of this novel model were discussed. The research result shows that the aftershocks of the Lushan Earthquake follow the Gutenberg-Richter and Omori laws, and the power exponents are about 0.766 and 2.52 respectively. The developed model can give a good prediction of the Gutenberg-Richter and Omori laws in Lushan aftershocks together. And simulated results and observations have a high correspondence to indicate that Lushan aftershock is an example of an SOC process.

     

  • loading
  • 曾详方,罗艳,韩立波,等. 2013年4月20日四川芦山Ms7.0地震:一个高角度逆冲地震[J]. 地球物理学报,2013,56(4): 1418-1424. ZENG Xiangfang, LUO Yan, HAN Libo, et al. The Lushan Ms7.0 earthquake on 20 April, 2013: a high-angle thrust event[J]. Chinese Journal of Geophysics, 2013, 56(4): 1418-1424.
    杜方,龙锋,阮详,等. 四川芦山7.0级地震与汶川8.0级地震的关系[J]. 地球物理学报,2013,56(5): 1772-1783. DU Fang, LONG Feng, RUAN Xiang, et al. The M7.0 Lushan earthquake and the relationship with the M8.0 Wenchuan earthquake in Sichuan, China[J]. Chinese Journal of Geophysics, 2013, 56(5): 1772-1783.
    王卫民,郝金来,姚振兴. 2013年4月20日四川芦山地震震源破裂过程的反演初步结果[J]. 地球物理学报,2013,56(4): 1412-1417. WANG Weimin, HAO Jinlai, YAO Zhenxing. Preliminary result for rupture process of Apr. 20, 2013, Lushan earthquake, Sichuan, China[J]. Chinese Journal of Geophysics, 2013, 56(4): 1412-1417.
    KALYONCUOGLU U Y. Evaluation of seismicity and seismic hazard parameters in Turkey and surrounding area using a new approach to the Gutenberg-Richter relation[J]. Journal of Seismology, 2007, 11(2): 131-148.
    UTSU T, OGATA Y, MATSUURA R S. The centenary of the Omori formula for a decay law of aftershock activity[J]. Journal of Physics of the Earth, 1995, 43(1): 1-33.
    HAINZL S, ZOLLER G, KURTHS J. Similar power laws for fore- and aftershock sequences in a spring-block model for earthquakes[J]. Journal of Geophysical Research, 1999, 104(B4): 7243- 7253.
    ITO K, MATSUZAKI M. Earthquakes as self-organized critical phenomena[J]. Journal of Geophysical Research, 1990, 95(B1): 6853-6860.
    NUR A, BOOKER J R. Aftershocks caused by pore fluid flow?[J]. Science, 1972, 175(25): 885-887.
    DIETERICH J H. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. Journal of Geophysical Research, 1994, 99(B2): 2601-2618.
    SHCHERBAKOV R, TURCOTTE D L. A damage mechanics model for aftershocks[J]. Pure and Applied Geophysics, 2004, 161(11/12): 2379-2391.
    OLAMI Z, FEDER H J S, CHRISTENSEN K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes[J]. Physical Review Letters, 1992, 68(8): 1244-1247.
    HERGARTEN S, NEUGEBAUER H J. Foreshocks and aftershocks in the Olami-Feder-Christensen model[J]. Physical Review Letters, 2002, 88(23): 238501-1-238501-4.
    ZHANG Bin, SHI Kai, LIU Chunqiong, et al. Scaling behavior of magnitude clusters in aftershock sequence: an example of the Wenchuan earthquake, China[J]. Science China Earth Sciences, 2012, 55(3): 507-512.
    SHI Kai, DI Baofeng, LIU Chunqiong, et al. Wenchuan aftershocks as an example of self-organized criticality[J]. Journal of Asian Earth Sciences, 2012, 50(1): 61-65.
    BAK P, TANG C. Earthquakes as a self-organized critical phenomenon[J]. Journal of Geophysical Research, 1989, 94(B11): 15635-15637.
    BAK P, TANG C, WIESENFELD K. Self-organized criticality[J]. Physics Review A, 1988, 38(1): 364-374.
    GELLER R, JACKSON D, KAGAN Y, et al. Earthquakes cannot be predicted[J]. Science, 1997, 275: 1616-1617.
    CHEN K, BAK P, OBUKHOV S P. Self-organized criticality in a crack-propagation model of earthquakes[J]. Physical Review A, 1991, 43(2): 625-630.
    BAK P, CHEN K. Self-organized criticality[J]. Scientific American, 1991, 264(1): 26-33.
    ZHANG Shudong, HUANG Zuqia, DING Ejiang. Predictions of large events on a spring-block model[J]. Journal of Physics A, 1996, 29: 4445-4455.
    WANG Jinghong, XIE Shu, SUN Jinhua. Self-organized criticality judgment and extreme statistics analysis of major urban fires[J]. Chinese Science Bulletin, 2011, 56(6): 567-572.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(895) PDF downloads(497) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return