• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 3
May  2014
Turn off MathJax
Article Contents
QUAN Wei, CHEN Jinxiong, JIANG Yongquan, YU Nanyang. Real-Time Object Tracking Based on Hough Ferns[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 477-484. doi: 10.3969/j.issn.0258-2724.2014.03.017
Citation: QUAN Wei, CHEN Jinxiong, JIANG Yongquan, YU Nanyang. Real-Time Object Tracking Based on Hough Ferns[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 477-484. doi: 10.3969/j.issn.0258-2724.2014.03.017

Real-Time Object Tracking Based on Hough Ferns

doi: 10.3969/j.issn.0258-2724.2014.03.017
  • Received Date: 07 Feb 2013
  • Publish Date: 25 Jun 2014
  • In order to deal with the tough problem of providing high accuracy and meanwhile achieving real-time tracking using Hough-based approaches under very limited samples for training, a Hough ferns based method was proposed for object tracking. This method uses the random ferns as the basic detector. It samples the local appearances of object as training set, and computes and saves the Hough votes for each leaf-node. The detector and object model were learned online at runtime to adapt to the variation of object and the TLD (tracking-learning-detection) was improved to achieve long-term visual tracking in unconstrained environment. Experimental results on Babenko sequences demonstrate that the average running speed of the tracker based on the proposed approach on a normal PC is 3fps and the average accuracy rate is 87.1%, showing its better tracking performance than several state-of-the-art methods.

     

  • loading
  • LUCAS B, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th International Joint Conferences on Artificial Intelligence (IJCAI). San Francisco: Morgan Kaufmann, 1981: 674-679.
    YILMAZ A, JAVED O, SHAH M. Object tracking: a survey[J]. ACM Computing Surveys, 2006, 38(4): 13-1-13-45.
    AVIDAN S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271.
    YU Q, DINH T, MEDIONI G. Online tracking and reacquisition using co-trained generative and discriminative trackers[J]. Lecture Notes in Computer Science, 2008, 5303: 678-691.
    HOLZER S, ILIC S, NAVAB N. Multilayer adaptive linear predictors for real-time tracking[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 105-117.
    SI Zhangzhang, ZHU Songchun. Learning AND-OR templates for object recognition and detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2189-2205.
    GRABNER H, BISCHOF H. On-line boosting and vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2006: 260-267.
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
    SAFFARI A, LEISTNER C, SANTNER J, et al. On-line random forests[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV), Workshop on On-line Learning for Computer Vision. Los Alamitos: IEEE, 2009: 1393-1400.
    BABENKO B, YANG M H, BELONGIE S. Visual tracking with online multiple instance learning[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2009: 983-990.
    KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV), Workshop on On-line Learning for Computer Vision. Los Alamitos: IEEE, 2009: 1417-1424.
    KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: bootstrapping binary classifiers by structural constraints[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2010: 49-56.
    OZUYSAL M, FUA P, LEPETIT V. Fast keypoint recognition in ten lines of code[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2007: 1-8.
    GALL J, YAO A, RAZAVI N, et al. Hough forests for object detection, tracking, and action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2188-2202.
    BALLARD D H. Generalizing the hough transform to detect arbitrary shapes[J]. Pattern Recognition, 1981, 13(2): 111-122.
    SIVIC J, ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos[C]//Proceedings of IEEE Conference on Computer Vision (ICCV). Los Alamitos: IEEE, 2003: 1470-1477.
    COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603 619.
    STENGER B, WOODLEY T, CIPOLLA R. Learning to track with multiple observers[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2009: 1063-6919.
    AGARWAL S, AWAN A, ROTH D. Learning to detect objects in images via a sparse, part-based representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1475-1490.
    ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2006: 798-805.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(799) PDF downloads(514) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return