Citation: | QUAN Wei, CHEN Jinxiong, JIANG Yongquan, YU Nanyang. Real-Time Object Tracking Based on Hough Ferns[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 477-484. doi: 10.3969/j.issn.0258-2724.2014.03.017 |
LUCAS B, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th International Joint Conferences on Artificial Intelligence (IJCAI). San Francisco: Morgan Kaufmann, 1981: 674-679.
|
YILMAZ A, JAVED O, SHAH M. Object tracking: a survey[J]. ACM Computing Surveys, 2006, 38(4): 13-1-13-45.
|
AVIDAN S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271.
|
YU Q, DINH T, MEDIONI G. Online tracking and reacquisition using co-trained generative and discriminative trackers[J]. Lecture Notes in Computer Science, 2008, 5303: 678-691.
|
HOLZER S, ILIC S, NAVAB N. Multilayer adaptive linear predictors for real-time tracking[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 105-117.
|
SI Zhangzhang, ZHU Songchun. Learning AND-OR templates for object recognition and detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2189-2205.
|
GRABNER H, BISCHOF H. On-line boosting and vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2006: 260-267.
|
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
|
SAFFARI A, LEISTNER C, SANTNER J, et al. On-line random forests[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV), Workshop on On-line Learning for Computer Vision. Los Alamitos: IEEE, 2009: 1393-1400.
|
BABENKO B, YANG M H, BELONGIE S. Visual tracking with online multiple instance learning[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2009: 983-990.
|
KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV), Workshop on On-line Learning for Computer Vision. Los Alamitos: IEEE, 2009: 1417-1424.
|
KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: bootstrapping binary classifiers by structural constraints[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2010: 49-56.
|
OZUYSAL M, FUA P, LEPETIT V. Fast keypoint recognition in ten lines of code[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2007: 1-8.
|
GALL J, YAO A, RAZAVI N, et al. Hough forests for object detection, tracking, and action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2188-2202.
|
BALLARD D H. Generalizing the hough transform to detect arbitrary shapes[J]. Pattern Recognition, 1981, 13(2): 111-122.
|
SIVIC J, ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos[C]//Proceedings of IEEE Conference on Computer Vision (ICCV). Los Alamitos: IEEE, 2003: 1470-1477.
|
COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603 619.
|
STENGER B, WOODLEY T, CIPOLLA R. Learning to track with multiple observers[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2009: 1063-6919.
|
AGARWAL S, AWAN A, ROTH D. Learning to detect objects in images via a sparse, part-based representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1475-1490.
|
ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2006: 798-805.
|