• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 1
Jan.  2014
Turn off MathJax
Article Contents
GOU Guanglei, WANG Guoyin, LI Hong. Sorting Decision Model for Dynamic Fault Tolerance Based on Dominance Relation Rough Set[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 147-152. doi: 10.3969/j.issn.0258-2724.2014.01.023
Citation: GOU Guanglei, WANG Guoyin, LI Hong. Sorting Decision Model for Dynamic Fault Tolerance Based on Dominance Relation Rough Set[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 147-152. doi: 10.3969/j.issn.0258-2724.2014.01.023

Sorting Decision Model for Dynamic Fault Tolerance Based on Dominance Relation Rough Set

doi: 10.3969/j.issn.0258-2724.2014.01.023
  • Received Date: 30 Dec 2012
  • Publish Date: 25 Jan 2014
  • To enhance the fault-tolerant capacity of the dominance relation rough set model in solving sorting decision problems, three efficient sorting decision algorithms are proposed by regarding the fault-tolerant processing as a dynamic adjusting process according to the fault tolerance direction of the user's preference, i.e., upward, downward, or synthesis of the both. The boundary objects are initially ranked by the proposed algorithms, and the obtained results are adjusted using the coverage information as the heuristic criteria to achieve a accurate or near accurate sorting of the object finally. In contrast to the variable-consistency dominance-based rough set approach (VC-DRSA), the proposed algorithms do not need prior domain knowledge to determine and adjust a threshold. Application of the algorithms to wine quality dataset show that the proposed methods can achieve a 21.34% improvement in average sorting accuracy and a 50.91% reduction in average mis-sorting cost, compared with the existing methods.

     

  • loading
  • ZOPOUNIDIS C, DOUMPOS M. Multicriteria classification and sorting methods: a literature review[J]. European Journal of Operational Research, 2002, 138 (2): 229-246.
    安利平, 陈增强. 基于二元关系和布尔推理的分级决策模型[J]. 系统工程学报, 2009, 24(6): 701-709. AN Liping, CHEN Zengqiang. Sorting decision model based on binary relations and Boolean reasoning[J]. Journal of System Engineering, 2009, 24(6): 701-709.
    CHEN Shuwei, LIU Jun, WANG Hui, et al. Ordering based decision making—a survey[J]. Information Fusion, 2013, 14(4): 521-531.
    HU Qinghua, GUO Maozu, YU Daren, et al. Information entropy for ordinal classification[J]. Science China Information Sciences, 2010, 53(6): 1188-1200.
    COSTA J F P, ALONSO H, CARDOSO J S. The unimodal model for the classification of ordinal data[J]. Neural Networks, 2008, 21(1): 78-91.
    PENG Yi, KOU Gang, WANG Guoxun, et al. FAMCDM: a fusion approach of MCDM methods to rank multiclass classification algorithms[J]. Omega, 2011, 39(6): 677-689.
    DEMBCZYNSKI K, KOTLOWSKI W, SLOWINSKI R. Ordinal classification with decision rules, mining complex data[M]. Berlin: Springer-Verlag, 2008: 169-181.
    XIA Fen, ZHANG Wensheng, LI Fuxin, et al. Ranking with decision tree[J]. Knowledge and Information Systems, 2008, 17(3): 381-395.
    GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets theory for multicriteria decision analysis[J]. European Journal of Operational Research, 2001, 129(1): 1-47.
    GRECO S, MATARAZZO B, SLOWINSKI R. Rough approximation by dominance relations[J]. International Journal of Intelligent Systems, 2002, 17(2): 153-171.
    GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets methodology for sorting problems in presence of multiple attributes and criteria[J]. European Journal of Operational Research, 2002, 138: 247-259.
    CHAKHAR S, SAAD I. Dominance-based rough set approach for groups in multicriteria classification problems[J]. Decision Support Systems, 2012, 54(1): 372-380.
    GRECO S, MATARAZZO B, SLOWINSKI R, et al. Variable consistency model of dominance-based rough sets approach[C]//Rough Sets and Current Trends in Computing. Berlin: Springer-Verlag, 2001: 170-181.
    HU Qinghua, YU Daren. Variable precision dominance based rough set model and reduction algorithm for preference-ordered data[C]//Proceedings of the Third International Conference on Machine Learning and Cybernetics. Shanghai:[s.n.], 2004: 26-29.
    INUIGUCHI M, YOSHIOKA Y, KUSUNOKI Y. Variable-precision dominance-based rough set approach and attribute reduction[J]. International Journal of Approximate Reasoning, 2009, 50(8): 1199-1214.
    DENG W B, WANG G Y, HU Feng. An improved variable precision model of dominance-based rough set approach[C]//Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Berlin: Springer-Verlag, 2011: 60-67.
    FRANK A, ASUNCION, A. UCI Machine Learning Repository[DB/OL].[2012-12-28]. http:[C]//archive.ics.uci.edu/ml/citation_policy.html.
    BLASZCZYNSKI J, GRECO S, MATARAZZO B, et al. jMAF-dominance-based rough set data analysis framework[M]. Berlin: Springer-Verlag, 2013: 185-209.
    WITTEN H I, FRANK E, HALL M A. Data mining: practical machine learning tools and techniques[M].[S.l.]: Morgan Kaufmann, 2011: 85-145.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(888) PDF downloads(623) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return