• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 26 Issue 4
Aug.  2013
Turn off MathJax
Article Contents
ZHANG Jie. Blind Sources Separation of Non-stationary Signals Based on Adaptive Maximum Signal-to-Noise Ratio Method[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 769-775. doi: 10.3969/j.issn.0258-2724.2013.04.027
Citation: ZHANG Jie. Blind Sources Separation of Non-stationary Signals Based on Adaptive Maximum Signal-to-Noise Ratio Method[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 769-775. doi: 10.3969/j.issn.0258-2724.2013.04.027

Blind Sources Separation of Non-stationary Signals Based on Adaptive Maximum Signal-to-Noise Ratio Method

doi: 10.3969/j.issn.0258-2724.2013.04.027
  • Received Date: 29 Aug 2012
  • Publish Date: 25 Aug 2013
  • In order to improve the blind separation performance of non-stationary signals, a new blind source separation algorithm named adaptive maximum signal-to-noise ratio algorithm was proposed. This algorithm uses the signal noise ratio function as the cost function parameter and an improved multinomial coefficient autoregressive model to estimate the best length of moving average window. Simulations showed that FastICA algorithm needs to assume the probability density function (PDF) of the sources to approximate their un-Gaussian features by choosing the appropriate nonlinear function. If the assumed PDF considerably deviates from the true one, the sources could not be separated correctly. In the case of the sources with identical kurtosis, the separation algorithm using cumulants failed to separate the sources. The comparison between the proposed method, the classical FastICA algorithm, and the separation algorithm using cumulants showed that the proposed method could retrieve the time-varying non-stationary source signals accurately, and the separation performance of the proposed method was not influenced by the PDF and the kurtosis of the source signals.

     

  • loading
  • RICARDO A, SALIDO R, RADU R, et al. EEG montage analysis in the blind source separation framework[J]. Biomedical Signal Processing and Control, 2011, 33(1): 77-84.
    CLARK F S P, PETRAGLA M R, HADDAD D B. A new initialization method for frequency-domain blind source separation algorithms[J]. Signal Processing Letters, 2011, 18(6): 343-346.
    FABRIZIO G, FARINA A. An adaptive filtering algorithm for blind waveform estimation in diffuse multipath channels[J]. IET Radar Sonar, 2011, 5(3): 322-330.
    KOCINSKI J, DRGAS S, OZIMEK E. Evaluation of blind source separation for different algorithms based on second order statistics and different spatial configurations of directional microphones[J]. Applied Acoustics, 2012, 73(2): 109-116.
    ZHOU Guoxu, YANG Zuyuan, XIE Shengli. Mixing matrix estimation from sparse mixtures with unknown number of sources senior member[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 211-221.
    PETR T, ZBYN K. Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1037-1047.
    LINARE R, IGUAL J, SALAZAR A, et al. Semi-blind source extraction of atrial activity by combining statistical and spectral features[J]. Digital Signal Processing, 2011, 21(2): 391-403.
    HAMADA T, NAKANO K, ICHIJO A. Wavelet based underdetermined blind source separation of speech mixtures[C]//International Conference on Control, Automation and Systems. Seoul:, 2007: 2790-2794.
    OZGEN M T, KURUOGLU E E, HERRANZ D. Astrophysical image separation by blind tim e frequency source separation methods[J]. Digital Signal Processing, 2009(19): 360-369.
    ZHANG Jie, LIN Jianhui. Improved blind source separation method based on independent component analysis and empirical mode decomposition[C]//Proceeding of the 4th International Conference on Image and Signal processing. Shanghai: IEEE, 2011: 2217-2219.
    李奕璠,林建辉,刘建新. 基于组合预测模型的轮轨力连续测试[J]. 西南交通大学学报,2012,47(4): 597-604. LI Yifan, LIN Jianhui, LIU Jianxin. Wheel-rail force continuous measurement based on combinational forecast model[J]. Journal of Southwest Jiaotong University, 2012, 47(4): 597-604.
    LIU Fang, DONG Jinwen, JING Yongzhi. Structure analysis of levitation chassis of medium-to-low speed maglev vehicles based on left-right decoupling[J]. Journal of Modern Transportation, 2012, 20(2): 82-87.
    PRASAD R, SARUWATARI H, SHIKANO K. Blind separation of speech by fixed-point ica with source adaptive negentropy approximation[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2005, E88-A(7): 1683-1692.
    BLASCHKE T, WISKOTT L. An improved cumulant based method for independent component analysis[C]//Proceedings of the 2002 International Conference on ICANN. Madrid: IEEE, 2002: 27-30.
    张小兵,马建仓,陈翠华,等. 基于最大信噪比的盲源分离算法[J]. 计算机仿真,2006,23(10): 72-75. ZHANG Xiaobing, MA Jiancang, CHEN Cuihua, et al. A blind source separation algorithm based on maximum signal noise ratio[J]. Computer Simulation, 2006, 23(10): 72-75.
    吕永乐. 一种新的统计预测模型:多项式系数自回归模型[J]. 计算机工程与应用,2012,48(3): 237-241. LV Yongle. New statistical prediction model: polynomial coefficient autoregressive mode1[J]. Computer Engineering and Applications, 2012, 48(3): 237-241.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(992) PDF downloads(395) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return