• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 26 Issue 1
Jan.  2013
Turn off MathJax
Article Contents
XIE Feng, MA Zhimin, LUAN Weidong. Quality Evaluation of Expressway Pavement Based on Fuzzy Neural Networks[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 160-164. doi: 10.3969/j.issn.0258-2724.2013.01.025
Citation: XIE Feng, MA Zhimin, LUAN Weidong. Quality Evaluation of Expressway Pavement Based on Fuzzy Neural Networks[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 160-164. doi: 10.3969/j.issn.0258-2724.2013.01.025

Quality Evaluation of Expressway Pavement Based on Fuzzy Neural Networks

doi: 10.3969/j.issn.0258-2724.2013.01.025
  • Received Date: 26 Feb 2011
  • Publish Date: 25 Feb 2013
  • In order to improve the precision of highway asphalt pavement quality evaluation, a comprehensive evaluation model of pavement quality was built using Takagi-Sugeno (T-S) fuzzy theory combined with back propagation (BP) neural network. In this model, 4 indexes including expressway asphalt pavement condition index, pavement structure strength index, road riding quality index, and skid resistance index are taken as input variables; a nonlinear mapping relationship of the pavement quality evaluation system is established by fuzzy inference rules; pavement detection indicators undergo the fuzzy neural network learning and training, until the error between network output and the expected output reach a minimum value; after defuzzification, quantitative quality evaluation result of each pavement is obtained. In addition, the proposed method was verified by an example using the real measured data. The results show that the method has the logical reasoning ability of fuzzy system and the quantitative data processing ability of neural network. Compared to the expected values, the pavement quality comprehensive evaluation results simulated by the proposed method have a relative error of less than 2.1%.

     

  • loading
  • 马士宾,薛文,王玲,等. 高速公路路面使用性能突变评价方法研究[J]. 公路,2006(11): 36-38. MA Shibin, XUE Wen, WANG Ling, et al. Expressway pavement performance evaluation method of mutation[J]. Highway, 2006(11): 36-38.
    TERZI S. Modeling the pavement serviceability ration of flexible highway pavement by artificial neural networks[J]. Construction and Building Materials, 2007(21): 590-593.
    党奇志. 基于灰色理论的旧沥青混凝土路面使用性能综合评价方法[J]. 公路,2011(11): 207-209. DANG Qizhi. Based on the theory of gray system of old asphalt concrete pavement performance evaluation method[J]. Highway, 2011(11): 207-209.
    张永清,贾双盈. 高等级公路沥青路面性能评价方法[J]. 长安大学学报:自然科学版,2005,25(2): 11-15. ZHANG Yongqing, JIA Shuangying. Evaluation method for asphalt pavement performance of freeway[J]. Journal of Chang'an University: Natural Science Edition, 2005, 25(2): 11-15.
    喻翔,毛敏,彭其渊. 高速公路路面使用性能评价的一种方法[J]. 公路交通科技,2005,22(12): 27-31. YU Xiang, MAO Min, PENG Qiyuan. A method for expressway pavement performance evaluation[J]. Journal of Highway and Transportation Research and Development, 2005, 22(12): 27-31.
    AASHTO. Pavement management guide:executive summary report[R]. Washington D. C.:America Association of State Highway and Transportation Officials, 2001.
    刘艳,康海贵,孙敏. 基于遗传算法的模糊优选神经网络路面性能评价模型[J]. 大连理工大学学报,2010,50(1): 117-122. LIU Yan, KANG Haigui, SUN Min. Genetic algorithm-based fuzzy optimization neural network model for pavement performance evaluation[J]. Journal of Dalian University of Technology, 2010, 50(1): 117-122.
    熊辉,史其信,潘先榜. 路面管理理论与方法的研究进展及趋势[J]. 土木工程学报,2004,37(1): 65-69. XIONG Hui, SHI Qixin, PAN Xianbang. Research progress and trend of Pavement management[J]. China Civil Engineering Journal, 2004, 37(1): 65-69.
    中华人民共和国交通部. JTJ 073.2—2001 公路沥青养护技术规范[S]. 北京:人民交通出版社,2001.
    JUANG C F, CHEN T M. Birdsong recognition using prediction-based recurrent neural fuzzy networks[J]. Neurocomputing, 2007, 71(1-3):121-130.
    DENG X S, WANG X Z. Incremental learning of dynamic fuzzy neural networks for accurate system modeling[J]. Fuzzy Sets and Systems, 2009, 160(7): 972-987.
    MASHINCHI M R, SELAMAT A. An improvement on genetic-based learing method for fuzzy artificial neural networks[J]. Applied Soft Computing, 2009, 9(4): 1208-1216.
    TAKAGI T, SNGENO M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Trans. on System, Man and Cybernetics, 1986, 15(1): 116-132.
    田景文,高美娟. 人工神经网络算法研究及应用[M]. 北京:北京理工大学出版社,2006: 158-161.
    董长虹. Matlab神经网络与应用[M]. 2版.北京:国防工业出版社,2007: 66-71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1261) PDF downloads(268) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return