• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 25 Issue 4
Aug.  2012
Turn off MathJax
Article Contents
LIU Jiaxin, QIN Sicheng, XU Zhenyuan, ZHANG Ao, XI Yu, ZHANG Xuelin. Numerical Simulation of Heat Exchange Performance of Radiator Module in Construction Vehicles[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 623-628. doi: 10.3969/j.issn.0258-2724.2012.04.014
Citation: LIU Jiaxin, QIN Sicheng, XU Zhenyuan, ZHANG Ao, XI Yu, ZHANG Xuelin. Numerical Simulation of Heat Exchange Performance of Radiator Module in Construction Vehicles[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 623-628. doi: 10.3969/j.issn.0258-2724.2012.04.014

Numerical Simulation of Heat Exchange Performance of Radiator Module in Construction Vehicles

doi: 10.3969/j.issn.0258-2724.2012.04.014
  • Received Date: 19 Oct 2011
  • Publish Date: 25 Aug 2012
  • In order to study the performance law of a construction vehicle radiator under different working conditions and ensure its working stability, a 3D physical model of the vehicle engine cabin was built based on original drawings with the software UG NX7.0, in which a heat exchange module was adopted to represent the radiator group. Then, the engine cabin model in a virtual tunnel was simulated using the computational fluid dynamics (CFD) numerical method, and the heat exchange performance of the radiator module was analyzed under various working conditions. Finally, the simulation results were verified experimentally. The results show that the heat exchange process has a gradient temperature change in each working condition, and increasing the temperature of the hot-air backflow will lower the radiator efficiency. When the radiator efficiency can not meet the need of the whole vehicle system, system overheating and performance instability occur. The error between simulation and experimental results is between 2.83% and 4.07%.

     

  • loading
  • HUR N, PARK J, LEE S. Development of a semimicroscopic heat exchange (SHE) method for a vehicle underhood thermal management[J]. Progress in Computational Fluid Dynamics, 2009, 9(3-5): 141-149.
    NG E, WATKINS S. New pressure-based methods for quantifying radiator airflow[J]. Proceedings of The Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2004, 218(D4): 361-372.
    WOO B, LEE Y, KANG C. Water cooling radiation method for inverter system of hybrid electric vehicles//INTELEC 2009-31st International Telecommunications Energy Conference. Incheon: , 2009: 18-22.
    HSIEH C, JANG J. 3-d thermal-hydraulic analysis for airflow over a radiator and engine room[J]. International Journal of Automotive Technology, 2007, 8(5): 659-666.
    SALAH M, MITCHELL T. A smart multiple-loop automotive cooling system model, control, and experimental study[J]. IEEE-ASME Transactions on Mechatronics, 2010, 15(1): 117-124.
    秦四成,王雪莲,秦司南,等. 轮式装载机热源系统空气场特征分析[J]. 中国公路学报,2010,23(3): 123-126. QIN Sicheng, WANG Xuelian, QIN Sinan, et al. Analysis of air-field property in heat source system of wheel loader[J]. China Journal of Highway and Transport, 2010, 23(3): 123-126.
    BATCHELOR K. An introduction to fluid dynamics[M]. Cambridge: Cambridge University Press, 1967: 61-196.
    刘伟. 多孔介质传热传质理论与应用[M]. 北京:科学出版社,2006: 53-178.
    李永乐,陈宁,蔡宪棠,等. 桥塔遮风效应对风-车-桥耦合振动的影响[J]. 西南交通大学学报,2010, 45(6): 875-881. LI Yongle, CHEN Ning, CAI Xiantang, et al. Wake effect of bridge tower on coupling vibration of wind-vehicle-bridge system[J]. Journal of Southwest Jiaotong University, 2010, 45(6): 875-881.
    傅立敏. 队列行驶车辆的空气动力特性[J]. 吉林大学学报:工学版,2006,36(6): 871-875. FU Limin. Aerodynamic characteristics of vehicle platoon[J]. Journal of Jilin University: Engineering and Technology Edition, 2006, 36(6): 871-875.
    袁风东,由世俊,杨向劲. 地铁侧式站台空调气流CFD模拟[J]. 西南交通大学学报,2005,40(3): 303-307. YUAN Fengdong, YOU Shijun, YANG Xiangjin. CFD simulation of air distribution of subway side-platform[J]. Journal of Southwest Jiaotong University, 2005, 40(3): 303-307.
    张小庆,乐嘉陵,许明恒. 超声速脉冲风洞起动过程数值模拟[J]. 西南交通大学学报,2008,43(6): 751-755. ZHANG Xiaoqing, LE Jialing, XU Mingheng. Numerical analysis of aerodynamic dipole source on high-speed train surface[J]. Journal of Southwest Jiaotong University, 2008, 43(6): 303-307.
    王英学,骆建军,李伦贵,等. 高速列车模型试验装置及相似特征分析[J]. 西南交通大学学报,2004,39(1): 20-24. WANG Yingxue, LUO Jianjun, LI Lungui, et al. Model experiment system for high-speed trains and analysis of its Similarity[J]. Journal of Southwest Jiaotong University, 2004, 39(1): 20-24.
    骆建军,高波,王英学,等. 高速列车穿越有竖井隧道流场的模拟[J]. 西南交通大学学报,2004,39(4): 442-446. LUO Jianjun, GAO Bo, WANG Yingxue, et al. Numerical simulation of unsteady three-dimensional flow induced by high-speed train entering tunnel with shaft[J]. Journal of Southwest Jiaotong University, 2004, 39(4): 442-446.
    李杰,张英朝,张喆,等. 轿车大客车会车时的气动特性[J]. 同济大学学报: 自然科学版,2010,38(2): 278-284. LI Jie, ZHANG Yingchao, ZHANG Jie, et al. Transient aerodynamics of sedan and coach crossing each other[J]. Journal of Tongji University: Natural Science, 2010, 38(2): 278-284.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1243) PDF downloads(524) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return