• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 25 Issue 1
Mar.  2012
Turn off MathJax
Article Contents
FAN Xuanhua, CHEN Pu, MU Wenpin. Two Precise Time-Integration Methods for Structural Dynamic Analysis[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 109-114. doi: 10.3969/j.issn.0258-2724.2012.021.01.018
Citation: FAN Xuanhua, CHEN Pu, MU Wenpin. Two Precise Time-Integration Methods for Structural Dynamic Analysis[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 109-114. doi: 10.3969/j.issn.0258-2724.2012.021.01.018

Two Precise Time-Integration Methods for Structural Dynamic Analysis

doi: 10.3969/j.issn.0258-2724.2012.021.01.018
  • Received Date: 14 Sep 2010
  • Publish Date: 25 Feb 2012
  • Similarities and differences in solving dynamic equations between precise time-integration method with augmented matrix (PTI-AM) and extended precise time-integration method (EPTI) were analyzed. The explicit, discrete and recursive expressions for both methods were deduced, respectively, with the evolutionary random excitations in a general combined form of polynomial, exponential, and sinusoid/cosine functions. Both recursive expressions can be transformed into polynomial functions corresponding to the integral steps. With the same number of terms in the Taylor series, the recursive expression for EPTI contains additional high-order terms besides all the terms in PTI-AM. Therefore, EPTI has higher precision than PTI-AM does. If those additional high-order terms are neglected, the two methods have an identical discrete and recursive expression. In this respect, the two methods are essentially the same despite of different programming realization. An engineering example was presented, showing that the computing precision of both methods was as high as 10-significant-figures, and the computing time of EPTI was over 1 order of magnitude less than that of PTI-AM.

     

  • loading
  •  李斌,刘学毅. 客运专线铁道车辆随机振动特性[J]. 西南交通大学学报,2010,45(2): 191-196.      LI Bin, LIU Xueyi. Random vibration property of high-speed railway vehicle in passeenger dedicated line[J]. Journal of Southwest Jiaotong University, 2010, 45(2): 191-196.       [2] TOC W S. Response statistics of discrete structures to non-stationary random processes[J]. Journal of Sound Vibration, 1986, 105(6): 217-231.       [3] 林家浩. 随机振动的虚拟激励法[M]. 北京:科学出版社,2004: 42-54.       [4] 王波,张海龙,徐丰. 考虑拉索局部振动的斜拉桥地震时程响应分析 [J]. 西南交通大学学报,2008,43(4): 441-446.      WANG Bo, ZHANG Hailong, XU Feng. Seismic time-history response analysis of cable-stayed bridge with local cable vibration[J]. Journal of Southwest Jiaotong University, 2008, 43(4): 441-446.       [5] 赵丽滨,王寿梅. 结构动力分析中时间积分方法进展[J]. 力学与实践,2001,23(2): 10-15.      ZHAO Libin, WANG Shoumei. Progress of time integration methods in structural dynamics analysis[J]. Mechanics and Engineering, 2001, 23(2): 10-15.       [6] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报,1994,34(2): 131-136.      ZHONG Wanxie. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136.       [7] ZHONG Wanxie. Review of a high-efficiency algorithm series for structural responses[J]. Progress in Natural Science, 1996, 6(3): 257-268.       [8] 张文首,林家浩,刘婷婷,等. 结构非平稳随机响应的增维精细时程积分[J]. 振动与冲击,2006,25(5): 18-20.      ZHANG Wenshou, LIN Jiahao, LIU Tingting, et al. Precise time-integration method with augmented matrix for analysis of non-stationary random responses[J]. Journal of Vibration and Shock, 2006, 25(5): 18-20.       [9] 张文首,林家浩,于骁. 受演变随机激励结构响应的增维精细时程积分法[J]. 大连理工大学学报,2007,47(2): 160-164.      ZHANG Wenshou, LIN Jiahao, YU Xiao. Precise time-integration method with augmented matrix for structural responses to evolutionary random excitations[J]. Journal of Dalian University of Technology, 2007, 47(2): 160-164.       [10] LIN Jiahao, SHEN Weiping, WILLIAMS F W. Accurate high speed coinputation of nonstationary random seismic response[J]. Engineering Structures, 1997, 19(7): 586-593.     [ 11] 谭述君,钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学报,2007,39(3): 374-381.     TAN Shujun, ZHONG Wanxie. Precise integration method for duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 374-381.      [12] 幕文品. 受演变随机激励结构响应的扩展精细积分方法[D.] 北京:北京大学,2009: 39-42.      [13] 富明慧,刘祚秋,林敬华. 一种广义精细积分法[J]. 力学学报,2007,39(5): 672-677.     FU Minghui, LIU Zuoqiu, LIN Jinghua. A generalized precise time step integration method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 672-677.     [ 14] 富明慧,林敬华. 精细积分法在非线性动力学问题中的应用[J]. 中山大学学报,2008,47(3): 1-5.     FU Minghui, LIN Jinghua. Precise time step integration method in nonlinear dynamics[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(3): 1-5.      [15] 张继峰,邓子辰. 结构动力方程的增维分块精细积分法[J]. 振动与冲击,2008,27(12): 88-90.     ZHANG Jifeng, DENG Zichen. Dimensional increment and partitioning precise integration method for structural dynamic equation[J]. Journal of Vibration and Shock, 2008, 27(12): 88-90.      [16] 高淑英,沈火明. 线性振动教程[M]. 北京:中国铁道出版社,2003: 1-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1539) PDF downloads(563) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return