• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 25 Issue 1
Mar.  2012
Turn off MathJax
Article Contents
Guo Lie, GAO Long, ZHAO Zongyan. PedestrianDetectionandTrackingBasedonAutomotiveVision[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 19-25. doi: 10.3969/j.issn.0258-2724.2012.021.01.004
Citation: Guo Lie, GAO Long, ZHAO Zongyan. PedestrianDetectionandTrackingBasedonAutomotiveVision[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 19-25. doi: 10.3969/j.issn.0258-2724.2012.021.01.004

PedestrianDetectionandTrackingBasedonAutomotiveVision

doi: 10.3969/j.issn.0258-2724.2012.021.01.004
  • Received Date: 24 Jan 2011
  • Publish Date: 25 Feb 2012
  • To improve the automotive active safety and guarantee the safety of pedestrians under urban transportation conditions, a pedestrian protection method based on automotive vision was presented. The Adaboost algorithm was utilized to detect pedestrians rapidly, and the Kalman filter principle was adopted to track these pedestrians and obtain their trajectories. With this method, the samples' Haar-like features are calculated and trained by the discrete Adaboost algorithm to obtain the cascaded pedestrian recognition classifiers. These classifiers are exploited to search for pedestrians by scanning those images captured by automotive vision. The Kalman filtering principle is applied to track these pedestrians and build the dynamic region of interest for pedestrian detection. The tracking results are used to analyze their behaviors. The experimental results show that the proposed method can detect pedestrians in about 80 ms per frame with an accuracy of 88%. The time cost can reduce to 55 ms per frame after using the Kalman-based pedestrian tracking method.

     

  • loading
  •  王红,李占峰,刘玉清. 现代汽车主动安全技术[J]. 农业装备与车辆工程,2009(5): 45-48.      WANG Hong, LI Zhanfeng, LIU Yuqing. Active safety technique of modern automobiles[J]. Agricultural Equipment Vehicle Engineering, 2009(5): 45-48.       [2] 郭烈. 基于单目视觉的车辆前方行人检测技术研究[D]. 长春:吉林大学,2007.       [3] National Highway Traffic Safety Administration. DOT HS 811163 Traffic safety facts 2008 data-pedestrians[R]. Washington D.C.: NHTSA's National Center for Statistics and Analysis, 2009.       [4] 王洪明. 我国公路交通事故的现状及特征分析[J]. 中国安全科学学报,2009,19(10): 121-126.      WANG Hongming. Present situation of road traffic accident in China and its characteristics[J]. China Safety Science Journal, 2009, 19(10): 121-126.       [5] BAJRACHARYA M, MOGHADDAM B, HOWARD A, et al. A fast stereo-based system for detecting and tracking pedestrians from a moving vehicle[J]. The International Journal of Robotics Research, 2009, 28(11): 1466-1485.       [6] MUNDER S, SCHNORR C, GAVRILA D M. Pedestrian detection and tracking using a mixture of view-based shape-texture models[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 333-343.       [7] ENZWEILER M, GAVRILA D M. Monocular pedestrian detection: survey and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2179-2195.       [8] 江帆,王贵锦,刘畅,等. 一种基于模型融合的行人跟踪算法[J]. 视频应用与工程,2010,34(3): 85-87.      JIANG Fan, WANG Guijin, LIU Chang, et al. Human tracking algorithm based on model fusion[J]. Video Application Project, 2010, 34(3): 85-87.       [9] 程有龙,李斌,张文聪,等. 融合先验知识的自适应行人跟踪算法[J]. 模式识别与人工智能,2009,22(5): 704-708.      CHENG Youlong, LI Bin, ZHANG Wencong, et al. An adaptive pedestrian tracking algorithm with prior knowledge[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(5): 704-708.       [10] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of online learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.      [11] VIOLA P, JONES M. Robust real-time object detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154.      [12] 李文波,王立研. 一种基于Adaboost算法的车辆检测方法[J]. 长春理工大学学报:自然科学版,2009,32(2): 292-295.     LI Wenbo, WANG Liyan. An approach of vehicle detection based on Adaboost algorithm[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2009, 32(2): 292-295.      [13] WELCH G, BISHOP G. SIGGRAPH 2001 course 8: an introduction to the Kalman filter[C]∥ Proc. of Computer Graphics, Annual Conference on Computer Graphics Interactive Techniques. Los Angeles: ACM Press, Addison-Wesley, 2001: 19-33.      [14] 张明恒. 基于面部朝向的驾驶员精神分散监测方法研究[D]. 长春:吉林大学,2007.      [15] 李娟,邵春福,杨励雅,等. 基于Kalman滤波的行人跟踪方法研究[J]. 系统工程理论与方法,2009,9(6): 148-153.     LI Juan, SHAO Chunfu, YANG Liya, et al. Study on pedestrian tracking based on Kalman filter[J]. Journal of Transportation Systems Engineering and Information Technology, 2009, 9(6): 148-153.      [16] 顾柏园. 基于单目视觉的安全车距预警系统研究[D]. 长春:吉林大学,2006.      [17] 童兵亮. 基于嘴部状态的疲劳驾驶和精神分散状态监测方法研究[D]. 长春:吉林大学,2004.      [18] 焦坤. 基于单目视觉的车辆前方行人识别方法研究[D]. 沈阳:东北大学,2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1606) PDF downloads(526) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return