• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 25 Issue 2
Mar.  2012
Turn off MathJax
Article Contents
GAO Qing, . THE DAMAGE-COUPLED TIME-DEPENDENT MULTIAXIAL THEORETICAL MODEL: II. THE ENGINEERING APPLICABILITY OF FINITE ELEMENT IMPLEMENTATION[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 230-235. doi: 10.3969/j.issn.0258-2724.2012.02.010
Citation: GAO Qing, . THE DAMAGE-COUPLED TIME-DEPENDENT MULTIAXIAL THEORETICAL MODEL: II. THE ENGINEERING APPLICABILITY OF FINITE ELEMENT IMPLEMENTATION[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 230-235. doi: 10.3969/j.issn.0258-2724.2012.02.010

THE DAMAGE-COUPLED TIME-DEPENDENT MULTIAXIAL THEORETICAL MODEL: II. THE ENGINEERING APPLICABILITY OF FINITE ELEMENT IMPLEMENTATION

doi: 10.3969/j.issn.0258-2724.2012.02.010
  • Received Date: 03 Dec 2010
  • Rev Recd Date: 07 Apr 2011
  • Publish Date: 25 Apr 2012
  • A damaged-coupled time-dependent fatigue failure model was implemented into the finite element code ABAQUS via user material subroutine UMAT, and typical numerical examples were used to simulate the low cycle fatigue (LCF) failure behavior of 63Sn-37Pb solder alloy structural specimen under nonproportional loading paths. The comparison with the experimental results under the same loading paths shows that the implemented constitutive model can simulate the load response and the load decaying with cyclic number, and predict LCF life of the solder structural specimen well. Therefore, the finite element implementation of fatigue failure model is reasonable and effective.

     

  • loading
  •  杨显杰,邵贰,罗艳,等. 63Sn-37Pb钎料室温单轴循环时的变形行为[J. 西南交通大学学报,2005,40(6): 774-778.  YANG Xianjie, SHAO Er, LUO Yan, et al. Deformation behavior of 63Sn-37Pb solder alloy under uniaxially cyclic loading at room temperature[J. Journal of Southwest Jiaotong University, 2005, 40(6): 774-778.      [2] WEI Y, CHOW C L, NEILSEN M K, et al. Fatigue damage accumulation in 63Sn-37Pb solder alloy[J. International Mechanical Engineering Congress Exposition, 2000, 28: 161-165.      [3] SHI X Q, PANG H L J, ZHOU W, et al. Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy[J. International Journal of Fatigue, 2000, 22: 217-228.      [4] KANCHANOMAI C, MIYASHITA Y, MUTOH Y. Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn/37Pb[J. International Journal of Fatigue, 2002: 671-683.      [5] JOHN H L, PANG, B S, XIONG T H. Low cycle fatigue study lead free 99.3Sn-0.7Cu solder alloy[J. International Journal of Fatigue, 2004, 26: 865-872.      [6] CHEN X, JIN D, SANAKE M, et al. Multiaxial low-cycle fatigue of 63Sn-37Pb solder[J. Journal of Electronic Materials, 2005, 34(1): 1-6.      [7] 高庆,陈旭. 多轴非比例加载下低周疲劳损伤模型[J. 西南交通大学学报,1992(6): 5-11.
         GAO Qing, CHEN Xu. Multiaxial low-cycle fatigue damage model under nonproportional loading[J. Journal of Southwest Jiaotong University, 1992(6): 5-11.      [8] CHEN Gang, CHEN Xu. Constitutive and damage model for 63Sn37Pb solder under uniaxial and torsional cyclic loading[J. International Journal of Solid and Structure, 2006, 43: 3596-3612.      [9] CHEN Gang, CHEN Xu. Fatigue damage coupled constitutive model for 63Sn37Pb solder under proportional and non-proportional loading[J. Mechanics of Materials, 2007, 39: 11-23.     [10] WEI Y, CHOW C L, NEILSEN M K, et al. Constitutive model for Sn-Pb solder under fatigue loading[J. Int. J. Damage Mech., 2004, 13(2): 147-161.     [11] TANG H, BASARAN C. A damage mechanics-based fatigue life prediction model for solder joints[J. Journal of Electronic Packaging, 2003, 125: 120-125.     [12] FU C, MCDOWELL D L. A Finite element procedure of a cyclic thermoviscoplasticity model for solder and copper interconnects[J. Journal of Electronic Packaging, 1998, 120: 24-34.     [13] KOBAYASHI M, OHNO N. Implementation of cyclic plasticity models based on a general form of kinematic hardening[J. International Journal of Numerical Method Engineering, 2002, 53: 2217-2238.     [14] KOBAYASHI M, MUKAI M, TAKAHASHI H, et al. Implicit integration and consistent tangent modulus of a time-dependent non-unified constitutive model[J. International Journal of Numerical Method Engineering, 2003, 58(10): 1523-1543.     [15] KANG Guozheng. A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation[J. Mechanics of Materials, 2004, 36: 299-312.     [16] 康国政. 循环硬化材料本构模型的隐式应力积分和有限元实现[J. 计算力学学报,2005,22(5): 579-584.
        KANG Guozheng. Implicit stress integration and finite element implementation of constitutive model for cyclic hardening materials[J. Chinese Journal of Computational Mechanics, 2005, 22(5): 579-584.     [17] 康国政. 循环稳定材料的棘轮行为: II.隐式应力积分算法和有限元实现[J. 工程力学,2005,22(3): 204-209.
        KANG Guozheng. Ratcheting of cyclically stable materials: II. implicit stress integration algorithm and finite element implementation[J. Engineering Mechanics, 2005, 22(3): 204-209.     [18] KANG Guozheng. Finite element implementation of visco-plastic constitutive model with strain-range-dependent cyclic hardening[J. Communications in Numerical Methods in Engineering, 2006, 22: 137-153.     [19] 罗艳. 电子封装钎料合金耦合损伤时相关多轴本构模型及疲劳失效模型研究[D. 成都:西南交通大学,2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1758) PDF downloads(542) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return