• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

隧道下穿诱发既有管道-土体非协调变形解析研究

潘钦锋 张丙强 黄志斌

潘钦锋, 张丙强, 黄志斌. 隧道下穿诱发既有管道-土体非协调变形解析研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230334
引用本文: 潘钦锋, 张丙强, 黄志斌. 隧道下穿诱发既有管道-土体非协调变形解析研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230334
PAN Qinfeng, ZHANG Bingqiang, HUANG Zhibin. Analytical Study for Uncoordinated Deformation of Existing Pipeline and Soil Induced by Tunnel Undercrossing[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230334
Citation: PAN Qinfeng, ZHANG Bingqiang, HUANG Zhibin. Analytical Study for Uncoordinated Deformation of Existing Pipeline and Soil Induced by Tunnel Undercrossing[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230334

隧道下穿诱发既有管道-土体非协调变形解析研究

doi: 10.3969/j.issn.0258-2724.20230334
基金项目: 福建省自然科学基金(2021J011058)
详细信息
    作者简介:

    潘钦锋(1975—),男,副教授,研究方向为防灾减灾工程,E-mail:phnpan@163.com

    通讯作者:

    张丙强(1979—),男,教授,博士,研究方向为道路与铁道工程,E-mail:zbq@fjut.edu.cn

  • 中图分类号: U211.1

Analytical Study for Uncoordinated Deformation of Existing Pipeline and Soil Induced by Tunnel Undercrossing

  • 摘要:

    为分析隧道下穿既有管道施工时既有管道底部脱空对其挠曲响应的影响,提出隧道下穿施工诱发既有管道-土体非协调变形理论模型及其解析解. 首先,将既有管道视为无拉力Pasternak地基上的Euler梁,根据管道与底部土体的接触状态,建立下穿施工引起既有管道-土体非协调变形控制方程,并推导出既有管道挠曲计算式;然后,采用提出的理论方法,探讨了既有管道脱空区上部竖向土压力、抗弯刚度及其所处位置地层沉降槽宽度和最大值等参数对其底部脱空区长度的影响;最后,提出下穿施工引起既有管道底部脱空区长度的参数归一化经验计算式,进一步简化新建隧道下穿施工引起既有管道挠曲的计算方法. 研究结果表明:既有管道底部脱空区长度与2个归一化参数(既有管道抗弯刚度与地基刚度比、既有管道脱空区上部竖向土压力与地层自由沉降槽最大值比)呈较好的相关性,其拟合公式计算值与理论数据的相关系数接近于1.

     

  • 图 1  新建隧道下穿既有管道的示意

    Figure 1.  Existing pipeline crossed by new tunnels

    图 2  中间脱空段管道的受力分析

    Figure 2.  Force analysis of pipeline with middle void

    图 3  两端接地段管道力学分析示意

    Figure 3.  Force analysis of pipeline with both ends grounded

    图 4  计算流程

    Figure 4.  Calculation flow

    图 5  理论计算结果与模型试验数据对比

    Figure 5.  Comparison of theoretical calculation results and model test data

    图 6  既有管道底部脱空区长度

    Figure 6.  Length of void under existing pipeline

    图 7  地层沉降槽宽度系数对其底部脱空区长度的影响

    Figure 7.  Influence of width coefficient of formation settlement trough on length of void under existing pipeline

    图 8  既有管道底部脱空区长度与其地基沉降最大值的关系

    Figure 8.  Relationship between length of void under existing pipeline and maximum value of formation settlement

    图 9  既有管道抗弯刚度对既有管道底部脱空区长度的影响

    Figure 9.  Influence of bending stiffness of existing pipeline on length of void

    图 10  既有管道底部脱空区长度与各参数关系

    Figure 10.  Relationship between length of void under existing pipeline and parameters

    图 11  工程实例横剖面图(单位:m)

    Figure 11.  Crosee section of engineering (unit: m)

    图 12  计算结果与工程实测数据对比

    Figure 12.  Comparison of calculated results and measured engineering data

    表  1  既有管道试验参数

    Table  1.   Test parameters of existing pipeline

    埋深
    Dp/mmtp/mmzp/mmE/GPaI/m4EI/(kN·m2
    31.752.0895.875692.14391.4793
    下载: 导出CSV

    表  2  新建隧道试验参数

    Table  2.   Test parameters of new tunnel

    Rt/mmzt/mmVt/%$\kappa $
    50154.13.760.558
    下载: 导出CSV

    表  3  标准砂试验参数

    Table  3.   Test parameters of standard sand

    Es/MPa$ {\nu _{\rm{s}}} $k/(MN·m−2G/(MN·m−1
    100.33212
    下载: 导出CSV
  • [1] 傅鹤林,于归,邓皇适,等. 类矩形盾构隧道上穿施工引起既有管道剪切错台变形研究[J]. 中南大学学报(自然科学版),2022,53(10): 3923-3935.

    FU Helin, YU Gui, DENG Huangshi, et al. Research on shear dislocation deformation of existing tunnel caused by construction of above-passing quasi-rectangular shield tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 3923-3935.
    [2] 倪准林,王树英,黄硕,等. 富水圆砾地层斜向并行隧道上部盾构掘进对下部管片力学状态的影响[J]. 中南大学学报(自然科学版),2022,53(8): 2996-3007.

    NI Zhunlin, WANG Shuing, HUANG Shuo, et al. Influence of the upper shield tunnel excavation on mechanical state of lower segment in water-rich rounded gravel stratum[J]. Journal of Central South University (Science and Technology), 2022, 53(8): 2996-3007.
    [3] LIU X, FANG Q, ZHANG D L. Mechanical responses of existing tunnel due to new tunnelling below without clearance[J]. Tunnelling and Underground Space Technology, 2018, 80: 44-52. doi: 10.1016/j.tust.2018.06.001
    [4] LIU X, FANG Q, ZHANG D L, et al. Behaviour of existing tunnel due to new tunnel construction below[J]. Computers and Geotechnics, 2019, 110: 71-81. doi: 10.1016/j.compgeo.2019.02.013
    [5] CHEN R P, LIN X T, KANG X, et al. Deformation and stress characteristics of existing twin tunnels induced by close-distance EPBS under-crossing[J]. Tunnelling and Underground Space Technology, 2018, 82(12): 468-481.
    [6] LAI H P, ZHENG H W, CHEN R, et al. Settlement behaviors of existing tunnel caused by obliquely under-crossing shield tunneling in close proximity with small intersection angle[J]. Tunnelling and Underground Space Technology, 2020, 97: 103258.1-103258.12.
    [7] JIN D L, YUAN D J, LI X G, et al. Analysis of the settlement of an existing tunnel induced by shield tunneling underneath[J]. Tunnelling and Underground Space Technology, 2018, 81: 209-220. doi: 10.1016/j.tust.2018.06.035
    [8] 章慧健,牛晓宇,刘功宁,等. 既有地铁列车振动荷载下密贴下穿通道的动力响应特性研究[J]. 岩石力学与工程学报,2023,42(5): 1273-1286.

    ZHANG Huijian, NIU Xiaoyu, LIU Gongning, et al. Research on the dynamic response of the closely-attached underpass induced by the trains’vibrating load of metro[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1273-1286.
    [9] ATTEWELL P B, YEATES J, SELBY A R. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. London: Blackie and Son Ltd., 1986.
    [10] KLAR A, VORSTER T E B, SOGA K, et al. Soil-pipe interaction due to tunnelling: comparison between Winkler and Elastic Continuum Solutions[J]. Géotechnique, 2005, 55(6): 461-466.
    [11] YU J, ZHANG C R, HUANG M S. Soil-pipe interaction due to tunnelling: assessment of Winkler modulus for underground pipelines[J]. Computer and Geotechnics, 2013, 50(5): 17-28.
    [12] 张桓,张子新. 盾构隧道开挖引起既有管线的竖向变形[J]. 同济大学学报(自然科学版),2013,41(8): 1172-1178.

    ZHANG Huan, ZHANG Zixin. Vertical deflection of existing pipeline due to shield tunnelling[J]. Journal of Tongji University (Natural Science), 2013, 41(8): 1172-1178.
    [13] 张冬梅,宗翔,黄宏伟. 盾构隧道掘进引起上方已建隧道的纵向变形研究[J]. 岩土力学,2014,35(9): 2659-2666.

    ZHANG Dongmei, ZONG Xiang, HUANG Hongwei. Longitudinal deformation of existing tunnel due to underlying shield tunneling[J]. Rock and Soil Mechanics, 2014, 35(9): 2659-2666.
    [14] 梁荣柱,宗梦繁,康成,等. 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报(工学版),2018,52(3): 420-430,472.

    LIANG Rongzhu, ZONG Mengfan, KANG Cheng, et al. Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(3): 420-430,472.
    [15] MARSHALL A M, KLAR A, MAIR R J. Tunneling beneath buried pipes: view of soil strain and its effect on pipeline behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1664-1672. doi: 10.1061/(ASCE)GT.1943-5606.0000390
    [16] LIN C G, HUANG M S, NADIM F, et al. Tunnelling-induced response of buried pipelines and their effects on ground settlements[J]. Tunnelling and underground space technology, 2020, 96(2): 103193.1-103193.17.
    [17] MA S K, SHAO Y, LIU Y, et al. Responses of pipeline to side-by-side twin tunnelling at different depths: 3D centrifuge tests and numerical modelling[J]. Tunnelling and underground space technology, 2017, 66: 157-173. doi: 10.1016/j.tust.2017.04.006
    [18] 吴为义. 盾构隧道周围地下管线的性状研究[D]. 杭州: 浙江大学, 2008.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  30
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-08
  • 修回日期:  2023-09-19
  • 网络出版日期:  2023-12-14

目录

    /

    返回文章
    返回