• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

双制式列车接地系统的车-地联合牵引供电计算

刘炜 杨凌云 马庆安 李雪飞 BHATTIAshfaque Ahmed

刘炜, 杨凌云, 马庆安, 李雪飞, BHATTIAshfaque Ahmed. 双制式列车接地系统的车-地联合牵引供电计算[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220655
引用本文: 刘炜, 杨凌云, 马庆安, 李雪飞, BHATTIAshfaque Ahmed. 双制式列车接地系统的车-地联合牵引供电计算[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220655
LIU Wei, YANG Lingyun, MA Qingan, LI Xuefei, BHATII Ashfaque Ahmed. Vehicle-Ground United Traction Power Supply Calculation in Dual-System Train Grounding System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220655
Citation: LIU Wei, YANG Lingyun, MA Qingan, LI Xuefei, BHATII Ashfaque Ahmed. Vehicle-Ground United Traction Power Supply Calculation in Dual-System Train Grounding System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220655

双制式列车接地系统的车-地联合牵引供电计算

doi: 10.3969/j.issn.0258-2724.20220655
基金项目: 四川省自然科学基金(2022NSFSC0463)
详细信息
    作者简介:

    刘炜(1982—),男,副教授,博士生导师,研究方向为城市轨道牵引供电系统理论与仿真、再生制动能量利用、杂散电流及钢轨电位,E-mail:liuwei_8208@swjtu.cn

  • 中图分类号: TM922.3

Vehicle-Ground United Traction Power Supply Calculation in Dual-System Train Grounding System

  • 摘要:

    为研究双制式列车在不同供电制式区段下的车体环流和车体—轴端电位分布,针对某型双制式列车构建列车接地系统的链式电路模型,并提出车-地一体化的交、直流区段联合牵引供电计算方法;同时,建立列车接地保护电阻优化模型,并分析2种列车接地系统配置方案. 以国内某条双制式线路为算例进行仿真验证,研究结果表明:方案1相较方案2,列车的车体—轴端电位最大值降低36.58%~41.04%,车体环流最大值降低18.49%~22.97%;并且在方案1中,头尾车保护电阻设置为20 mΩ,可使列车的车体—轴端电位最大值为1.15 V,车体电流最大值为50.30 A,达到抑制车体—轴端电位的最优效果. 该车-地一体化的交、直流区段联合牵引供电计算方法可适用于单一供电制式或者多供电制式列车接地系统的分析.

     

  • 图 1  双制式牵引供电系统

    Figure 1.  Dual-system traction power supply system

    图 2  线路列车既有接地系统

    Figure 2.  Existing train grounding system

    图 3  列车接地系统电路模型

    Figure 3.  Circuit model of train grounding system

    图 4  车—轨链式电路

    Figure 4.  Train–rail chain circuit

    图 5  双制式牵引网模型

    Figure 5.  Dual-system traction network model

    图 6  车—地一体的交、直流区段联合牵引供电计算电路模型

    Figure 6.  Circuit model of united traction power supply calculation for vehicle-ground integration in AC and DC sections

    图 7  供电系统与列车接地系统联合计算流程

    Figure 7.  Flowchart of united calculation of power supply system and train grounding system

    图 8  双制式轨道交通线路

    Figure 8.  Dual-system rail transit line

    图 9  上、下行列车功率曲线

    Figure 9.  Power curves of up and down trains

    图 10  监测点布置方案

    Figure 10.  Monitoring point layout

    图 11  列车取流以及钢轨电流(直流)

    Figure 11.  Train’s current and rail current (DC)

    图 12  保护电阻电流计算与实测对比(直流)

    Figure 12.  Comparison of protection resistance current calculation and measured value (DC)

    图 13  列车各保护电阻电流(直流)

    Figure 13.  Protection resistance current of train (DC)

    图 14  列车取流以及钢轨电流(交流)

    Figure 14.  Train’s current and rail current (AC)

    图 15  保护电阻电流计算与实测对比(交流)

    Figure 15.  Comparison of protection resistance current calculation and measured value (AC)

    图 16  列车各保护电阻电流(交流)

    Figure 16.  Protection resistance current of train (AC)

    图 17  列车接地系统改进方案

    Figure 17.  Improved scheme of train grounding system

    图 18  列车的车体—轴端电位和车体环流分布(方案1)

    Figure 18.  Distribution of current circulation and potential of train’s body–axle end (scheme 1)

    图 19  列车的车体—轴端分布和车体环流分布(方案2)

    Figure 19.  Distribution of current circulation and potential of train’s body–axle end (scheme 2)

    表  1  牵引所以及主所位置

    Table  1.   Location of traction station and main substation km

    牵混所编号 位置 主所编号 位置
    T1 0.15 TPS1 19.81
    TS1 1.74 TPS2 28.21
    T2 3.70
    下载: 导出CSV

    表  2  车辆参数

    Table  2.   Train parameters

    参数 数值
    列车编组 6A
    车重/t 223.88
    结构速度/(km·h−1 120
    最大加速度/(m·s−2 1.1(DC),0.9(AC)
    最大减速度/(m·s−2 1.2
    下载: 导出CSV

    表  3  列车接地系统模型参数

    Table  3.   Model parameters of train grounding system

    参数 AC DC
    Zct/mΩ 1.500 0.027
    Zctlj/mΩ 0.82 0.82
    R0/mΩ 50.6 50.0
    Zjd1/mΩ 0.89 0.89
    Zjd2/mΩ 1.21 1.21
    Zhlp/mΩ 3.9 3.9
    Zr/(mΩ·km−1 191.0[17] 36.4[18]
    下载: 导出CSV
  • [1] 周福林,王文昊,张伟,等. 地铁列车轴箱轴承电流测试与接地方式优化[J]. 中国铁道科学,2021,42(3): 136-143. doi: 10.3969/j.issn.1001-4632.2021.03.16

    ZHOU Fulin, WANG Wenhao, ZHANG Wei, et al. Current test and grounding mode optimization of axle box bearing for metro train[J]. China Railway Science, 2021, 42(3): 136-143. doi: 10.3969/j.issn.1001-4632.2021.03.16
    [2] 陈志文. 地铁车辆接地回流方案对比研究[D]. 北京:北京交通大学,2021.
    [3] 魏晓斌,魏文赋,桂志远,等. 基于AT供电方式下380B型高速动车组保护接地电流分布研究[J]. 铁道学报,2019,41(5): 64-70. doi: 10.3969/j.issn.1001-8360.2019.05.008

    WEI Xiaobin, WEI Wenfu, GUI Zhiyuan, et al. Research of protective grounding current distribution of 380B EMU based on AT power supply mode[J]. Journal of the China Railway Society, 2019, 41(5): 64-70. doi: 10.3969/j.issn.1001-8360.2019.05.008
    [4] 高国强,郑玥,曹保江,等. 动车组过吸上线时保护接地电流分布特性[J]. 铁道学报,2018,40(8): 60-67. doi: 10.3969/j.issn.1001-8360.2018.08.008

    GAO Guoqiang, ZHENG Yue, CAO Baojiang, et al. Distribution characteristics of protective earthing current when high-speed EMU passes through boosting cable[J]. Journal of the China Railway Society, 2018, 40(8): 60-67. doi: 10.3969/j.issn.1001-8360.2018.08.008
    [5] 魏晓斌,高国强,陈盼,等. 保护接地对高速动车组接地回流的影响[J]. 铁道学报,2017,39(8): 39-44. doi: 10.3969/j.issn.1001-8360.2017.08.006

    WEI Xiaobin, GAO Guoqiang, CHEN Pan, et al. Influence of protective grounding on high-speed EMU grounding reflux[J]. Journal of the China Railway Society, 2017, 39(8): 39-44. doi: 10.3969/j.issn.1001-8360.2017.08.006
    [6] 国家市场监督管理总局. 轨道交通 · 地面装置 · 电气安全、接地和回流 · 第3部分:交流和直流牵引供电系统的相互作用: GB/T 28026.3—2018[S] 北京: 中国标准出版社,2018.
    [7] 陈民武,付浩纯,谢崇豪,等. 交直流双制式牵引供电系统钢轨电位特性分析[J]. 西南交通大学学报,2022,57(4): 729-736. doi: 10.3969/j.issn.0258-2724.20200597

    CHEN Minwu, FU Haochun, XIE Chonghao, et al. Analysis of rail potential characteristics of AC/DC dual-system traction power supply system[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 729-736. doi: 10.3969/j.issn.0258-2724.20200597
    [8] GARZON J, LOIERO R, JORRETO F. Mixed ac/dc electrified railway lines: a study of grounding[J]. IEEE Vehicular Technology Magazine, 2020, 15(1): 91-98. doi: 10.1109/MVT.2019.2960698
    [9] SZELĄG A, PATOKA M. Some aspects of impact analysis of a planned new 25kV AC railway lines system on the existing 3 kV DC railway system in a traction supply transition zone[C]//2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Ischia: IEEE, 2014: 796-800.
    [10] SANE S, SHARMA S, PRASAD S K. Harmonic analysis for AC and DC supply in Traction substation of Mumbai[C]//2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). Coimbatore: IEEE, 2015: 1-5.
    [11] 刘卫东,胥伟,刘飞,等. 交直流双制式列车过分相暂态过程仿真研究[J]. 城市轨道交通研究,2022,25(7): 85-89.

    LIU Weidong, XU Wei, LIU Fei, et al. Research on transient process of AC/DC dual-system locomotive passing electric phase separation by simulation[J]. Urban Mass Transit, 2022, 25(7): 85-89.
    [12] STEIMEL A. Under Europe’s incompatible catenary voltages a review of multi-system traction technology[C]//2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. Bologna: IEEE, 2012: 1-8.
    [13] 彭继权,冯伯欣. 双流制山地城市As型地铁车辆接地系统研究[J]. 现代城市轨道交通,2019(12): 1-5.

    PENG Jiquan, FENG Boxin. Research on the grounding system of double Current As type metro vehicles in mountainous cities[J]. Modern Urban Transit, 2019(12): 1-5.
    [14] 吴命利. 电气化铁道牵引网的统一链式电路模型[J]. 中国电机工程学报,2010,30(28): 52-58.

    WU Mingli. Uniform chain circuit model for traction networks of electric railways[J]. Proceedings of the CSEE, 2010, 30(28): 52-58.
    [15] 刘瑞龙. 市域铁路交流牵引供电仿真研究[D]. 成都:西南交通大学,2018.
    [16] 孙磊,吴命利,孙继星,等. 基于整流机组外特性的地铁车辆短路电流计算[J]. 机车电传动,2019(5): 105-110,128.

    SUN Lei, WU Mingli, SUN Jixing, et al. Calculation of short-circuit current of metro vehicle based on external characteristics of rectifier unit[J]. Electric Drive for Locomotives, 2019(5): 105-110,128.
    [17] 李群湛,贺建闽. 牵引供电系统分析[M]. 成都: 西南交通大学出版社,2007.
    [18] 刘炜,李富强,唐靖坤,等. 城市轨道走行轨过渡电阻测量方法与计算误差[J]. 高电压技术,2020,46(8): 2856-2863.

    LIU Wei, LI Fuqiang, TANG Jingkun, et al. Measurement method and calculation error of rail-to-earth resistance in urban rail[J]. High Voltage Engineering, 2020, 46(8): 2856-2863.
    [19] 黄祥. 动车组车体环流分析与抑制方法研究[D]. 成都: 西南交通大学,2016.
    [20] 中华人民共和国铁道部. 铁道车辆金属部件的接地保护:TB/T 2977—2016[S]. 北京: 中国铁道出版社,2017.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2022-12-29
  • 网络出版日期:  2024-04-20

目录

    /

    返回文章
    返回