• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

复杂山区桥址区地形模型边界过渡段线型研究

张明金 颜庭辕 胡博 陈红宇 李永乐

张明金, 颜庭辕, 胡博, 陈红宇, 李永乐. 复杂山区桥址区地形模型边界过渡段线型研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220282
引用本文: 张明金, 颜庭辕, 胡博, 陈红宇, 李永乐. 复杂山区桥址区地形模型边界过渡段线型研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220282
ZHANG Mingjin, YAN Tingyuan, HU Bo, CHEN Hongyu, LI Yongle. Line Shape of Boundary Transition Section of Terrain Model at Bridge Sites in Complex Mountainous Areas[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220282
Citation: ZHANG Mingjin, YAN Tingyuan, HU Bo, CHEN Hongyu, LI Yongle. Line Shape of Boundary Transition Section of Terrain Model at Bridge Sites in Complex Mountainous Areas[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220282

复杂山区桥址区地形模型边界过渡段线型研究

doi: 10.3969/j.issn.0258-2724.20220282
基金项目: 国家自然科学基金(51708464)
详细信息
    作者简介:

    张明金(1984—),男,研究员,博士,研究方向为桥梁抗风, E-mail:Zhang-Minjin@swjtu.edu.cn

  • 中图分类号: U442.59

Line Shape of Boundary Transition Section of Terrain Model at Bridge Sites in Complex Mountainous Areas

  • 摘要:

    复杂山区桥址区地形模型过渡段曲线直接影响到风洞实验或数值模拟结果的精确性,为探究桥址区地形模型边界过渡段所采用线型的合理形式,基于设置过渡段的2种思路提出构造过渡段线型的基本原则;采用数值模拟方式对比研究3类典型过渡段线型在均匀来流流经时沿程气流分离特性、平均风速剖面、风攻角剖面及湍流动能沿程分布;分析过渡段斜率变化对流场的影响规律. 研究结果表明:平方正弦曲线在气流分离特性终同位置最大剪应力差为3.77 × 10−3 Pa,风特性过渡性能上同高度最大风速差0.09 m/s,最大湍流动能差1.46 × 10−3 J,均优于其他线型,为桥址区地形模型过渡段线型选取提供了重要参考.

     

  • 图 1  地形模型边界

    Figure 1.  Terrain model boundary

    图 2  理想流体圆柱绕流流线

    Figure 2.  Streamlines around an ideal fluid cylinder

    图 3  用于过渡段的2种函数及其导函数

    Figure 3.  Two functions and their derivatives used for transition segments

    图 4  绕兰金物体不可压缩无旋流动流场线

    Figure 4.  Streamline of incompressible irrotational flow around Rankin body

    图 6  计算区域及边界条件(单位:m)

    Figure 6.  Calculation area and boundary conditions (unit: m)

    图 5  用于过渡段的流场线及其导函数

    Figure 5.  Flow field lines and derivatives for transition section

    图 7  各工况在过渡段前后水平剪应力分布

    Figure 7.  Horizontal shear stress distribution in front and back of the transition section under each working condition

    图 8  平板参考风场沿程不同位置处风剖面

    Figure 8.  Wind profiles at different positions of plane reference wind field

    图 9  不同位置处各工况平均风剖面对比

    Figure 9.  Comparison of average wind profiles at different locations under each working condition

    图 10  不同位置处各工况风攻角剖面对比

    Figure 10.  Comparison of wind attack angle profiles at different locations under each working condition

    图 11  不同位置处各工况湍流动能对比

    Figure 11.  Comparison of turbulent kinetic energy at different locations under each working condition

    表  1  计算工况

    Table  1.   Working conditions for calculation

    计算工况ABCD
    过渡段形式平板参考风场兰金物体绕流流线双曲正切函数平方正弦函数
    下载: 导出CSV

    表  2  网格数量

    Table  2.   Number of grids 万个

    计算工况ABCD
    网格数244.00390.23100.75281.212
    下载: 导出CSV

    表  3  不同工况首层网格y+ 值

    Table  3.   y+ value of the first layer grid under different working conditions

    计算工况 y+ 最大值 y+ 平均值
    A 0.7615 0.5674
    B 0.9946 0.5334
    C 1.3259 0.5251
    D 0.9808 0.5338
    下载: 导出CSV
  • [1] 李永乐,遆子龙,汪斌,等. 山区Y形河口附近桥址区地形风特性数值模拟研究[J]. 西南交通大学学报,2016,51(2): 341-348.

    LI Yongle, TI Zilong, WANG Bin, et al. Numerical simulation of wind characteristics over bridge site near Y-shaped river junction in mountainous area[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 341-348.
    [2] 吴联活,张明金,李永乐,等. 复杂山区地形桥址区风特性的数值模拟[J]. 西南交通大学学报,2019,54(5): 915-922.

    WU Lianhuo, ZHANG Mingjin, LI Yongle, et al. Numerical simulation of wind characteristics at bridge sites in complex mountainous terrains[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 915-922.
    [3] 李永乐,蔡宪棠,唐康,等. 深切峡谷桥址区风场空间分布特性的数值模拟研究[J]. 土木工程学报,2011,44(2): 116-122.

    LI Yongle, CAI Xiantang, TANG Kang, et al. Study of spatial distribution feature of wind fields over bridge site with a deep-cutting gorge using numerical simulation[J]. Civil Engineering Journal, 2011, 44(2): 116-122.
    [4] ZHANG M J, LI Y L, WANG B, et al. Numerical simulation of wind characteristics at bridge site considering thermal effects[J]. Advances in Structural Engineering, 2018, 21(9): 1313-1326. doi: 10.1177/1369433217742524
    [5] WANG L, CHEN X X, CHEN H. Research on wind barrier of canyon bridge-tunnel junction based on wind characteristics[J]. Advances in Structural Engineering, 2021, 24(5): 870-883. doi: 10.1177/1369433220971730
    [6] CHEN X Y, LIU Z W, WANG X G, et al. Experimental and numerical investigation of wind characteristics over mountainous valley bridge site considering improved boundary transition sections[J]. Applied Sciences, 2020, 10(3): 751-773. doi: 10.3390/app10030751
    [7] 李永乐,胡朋,蔡宪棠,等. 紧邻高陡山体桥址区风特性数值模拟研究[J]. 空气动力学学报,2011,29(6): 770-776.

    LI Yongle, HU Peng, CAI Xiantang, et al. Numerical simulation of wind characteristics above bridge site adjacent a high-steep mountain[J]. Acta Aerodynamica Sinica, 2011, 29(6): 770-776.
    [8] 沈炼,韩艳,蔡春声,等. 山区峡谷桥址处风场实测与数值模拟研究[J]. 湖南大学学报(自然科学版),2016,43(7): 16-24.

    SHEN Lian, HAN Yan, CAI Chunsheng, et al. Experiment and numerical simulation for wind field of a long-span suspension bridge located in mountainous canyon[J]. Journal of Hunan University (Natural Sciences), 2016, 43(7): 16-24.
    [9] 洪新民,郭文华,熊安平. 山区峡谷风场分布特性及地形影响的数值模拟[J]. 长安大学学报(自然科学版),2017,37(5): 56-64.

    HONG Xinmin, GUO Wenhua, XIONG Anping. Numerical simulation of distribution characteristic of wind fields and terrain’s influence in mountain canyon[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 56-64.
    [10] 胡朋,李永乐,廖海黎. 山区峡谷桥址区地形模型边界过渡段形式研究[J]. 空气动力学学报,2013,31(2): 231-238.

    HU Peng, LI Yongle, LIAO Haili. Shape of boundary transition section for mountains-gorge bridge site terrain model[J]. Acta Aerodynamica Sinica, 2013, 31(2): 231-238.
    [11] 靖洪淼,廖海黎,马存明,等. 风场特性测量的地形模型边界过渡形式研究[J]. 振动与冲击,2020,39(8): 178-185,207.

    JING Hongmiao, LIAO Haili, MA Cunming, et al. A study on boundary transition of a terrain model for wind field characteristics measurement[J]. Journal of Vibration and Shock, 2020, 39(8): 178-185,207.
    [12] UCHIDA T, OHYA Y J. Large-eddy simulation of turbulent airflow over complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2): 219-229.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  27
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-09-29
  • 网络出版日期:  2024-01-11

目录

    /

    返回文章
    返回