• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

接触网承力索集中荷载测量方法

刘继冬 梁茹楠 陈交 程军营 吴积钦

刘继冬, 梁茹楠, 陈交, 程军营, 吴积钦. 接触网承力索集中荷载测量方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20211092
引用本文: 刘继冬, 梁茹楠, 陈交, 程军营, 吴积钦. 接触网承力索集中荷载测量方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20211092
LIU Jidong, LIANG Runan, CHEN Jiao, CHENG Junying, WU Jiqin. Measurement Method for Concentrated Load on Catenary Messenger Wires[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20211092
Citation: LIU Jidong, LIANG Runan, CHEN Jiao, CHENG Junying, WU Jiqin. Measurement Method for Concentrated Load on Catenary Messenger Wires[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20211092

接触网承力索集中荷载测量方法

doi: 10.3969/j.issn.0258-2724.20211092
基金项目: 中国国家铁路集团有限公司重点课题(N2021G029)
详细信息
    作者简介:

    刘继冬(1995—),男,博士研究生,研究方向为弓网关系及其评价,E-mail:jdliu9501@foxmail.com

    通讯作者:

    吴积钦(1966—),男,教授,博士,研究方向为弓网关系及其评价,E-mail:jqwu@swjtu.cn

  • 中图分类号: U225.1

Measurement Method for Concentrated Load on Catenary Messenger Wires

  • 摘要:

    为分析接触网承力索静止与振动状态下的线索形状与集中荷载对应关系. 采用抛物线法对静止状态的承力索进行找形计算,通过构建振动微分方程和使用傅里叶变换计算振动状态下的承力索形状;结合受力分析,并根据牛顿第二定律推导静止与振动状态下承力索集中荷载的公式,在获取静态与振动状态下集中荷载处位移变化后,可以通过该公式求解集中荷载;在实验室搭建的振动试验台上对测量方法进行了检验. 检验结果表明:静态时的绝对误差为0.20%,主振频率为1 Hz及2 Hz振动状态下的绝对误差百分比均在0.50%以内;采用机器视觉获取集中荷载处静态位置与振动位移数据,进而实现承力索集中荷载非接触测量的方法是可行的.

     

  • 图 1  简单链形悬挂接触网

    Figure 1.  Simple chained suspension catenary

    图 2  集中荷载处受力分析

    Figure 2.  Force analysis at concentrated load

    图 3  承力索静态受力分析

    Figure 3.  Force analysis of messenger wire in static state

    图 4  承力索振动分析

    Figure 4.  Vibration analysis of messenger wire

    图 5  透视投影原理

    Figure 5.  Principle of perspective projection

    图 6  振动测量图像

    Figure 6.  Image of vibration measurement

    图 7  承力索振动位移变化

    Figure 7.  Vibration displacement variation of messenger wire

    图 8  承力索振动位移频谱分析

    Figure 8.  Spectrum analysis on vibration displacement of messenger wire

    图 9  承力索振动位移测量与重构曲线对比

    Figure 9.  Comparison of measurement and reconstruction curves for messenger wire vibration

    图 10  振动试验台

    Figure 10.  Vibration measurement platform

    图 11  钢丝绳受力分析

    Figure 11.  Force analysis of steel strand

    图 12  承力索振动过程模拟

    Figure 12.  Simulation of messenger wire vibrating process

    图 13  频率1 Hz集中荷载时振动位移变化

    Figure 13.  Vibration displacement variation under 1 Hz concentrated load

    图 14  频率1 Hz集中荷载时振动位移频谱分析

    Figure 14.  Spectrum analysis on vibration displacement under 1 Hz concentrated load

    图 15  频率1 Hz集中荷载时测量值与计算值对比

    Figure 15.  Comparison between measured and calculated values under 1 Hz concentrated load

    图 16  频率2 Hz集中荷载时振动位移变化

    Figure 16.  Vibration displacement variation under 2 Hz concentrated load

    图 17  频率2 Hz集中荷载时振动位移频谱分析

    Figure 17.  Spectrum analysis on vibration displacement under 2 Hz concentrated load

    图 18  频率2 Hz集中荷载时测量值与计算值对比

    Figure 18.  Comparison between measured and calculated values under 2 Hz concentrated load

    表  1  静态集中荷载计算值与测量值统计

    Table  1.   Statistics of calculated and measured values of static concentrated load N

    位移/mm计算值测量值绝对误差
    1010.0810.100.02
    2020.9620.930.03
    3031.8431.850.01
    下载: 导出CSV
  • [1] 吴积钦. 受电弓与接触网系统[M]. 成都:西南交通大学出版社,2010:1-7.
    [2] 国家铁路局. 高速铁路设计规范:TB 10621—2014[S]. 北京:中国铁道出版社,2015.
    [3] 中铁电气化局集团有限公司. 电气化铁道接触网[M]. 北京:中国电力出版社,2004.
    [4] 邹栋. 高速铁路接触网振动行为研究[D]. 成都:西南交通大学,2017.
    [5] 于万聚. 高速电气化铁路接触网[M]. 成都:西南交通大学出版社,2003.
    [6] 韩志伟,刘志刚,张桂南,等. 非接触式弓网图像检测技术研究综述[J]. 铁道学报,2013,35(6):40-47. doi: 10.3969/j.issn.1001-8360.2013.06.007

    HAN Zhiwei, LIU Zhigang, ZHANG Guinan, et al. Overview of non-contact image detection technology for pantograph-catenary monitoring[J]. Journal of the China Railway Society, 2013, 35(6) :40-47. doi: 10.3969/j.issn.1001-8360.2013.06.007
    [7] 张国山,凌朝清,王欣博,等. 接触线几何参数图像检测系统设计[J]. 天津工业大学学报,2014,33(5):57-62. doi: 10.3969/j.issn.1671-024X.2014.05.013

    ZHANG Guoshan, LING Chaoqing, WANG Xinbo, et al. Image detection system design for geometry parameters of contact line[J]. Journal of Tianjin Polytechnic University, 2014, 33(5): 57-62. doi: 10.3969/j.issn.1671-024X.2014.05.013
    [8] 刘文强,刘志刚,耿肖,等. 基于均值漂移和粒子滤波算法的接触网几何参数检测方法研究[J]. 铁道学报,2015,37(11):30-36. doi: 10.3969/j.issn.1001-8360.2015.11.005

    LIU Wenqiang, LIU Zhigang, GENG Xiao, et al. Research on detection method for geometrical parameters of catenary system based on mean shift and particle filter algorithm[J]. Journal of the China Railway Society, 2015, 37(11):30-36. doi: 10.3969/j.issn.1001-8360.2015.11.005
    [9] 徐可佳. 双目立体视觉技术在接触网几何参数测量中的应用研究[D]. 成都:西南交通大学,2004.
    [10] 张桐林,郝宽胜,段汝娇. 基于计算机视觉技术的接触网定位器坡度动态测量算法[J]. 铁道标准设计,2013,57(1):105-108,126.

    ZHANG Tonglin, HAO Kuansheng, DUAN Rujiao. Dynamic detection algorithm of slope gradient of catenary locator based on computer vision technology[J]. Railway Standard Design, 2013, 57(1): 105-108,126.
    [11] 潘雪涛,张亚锋,孟飞,等. 电力机车接触导线几何参数光电检测系统[J]. 仪表技术与传感器,2011(3):38-40,43. doi: 10.3969/j.issn.1002-1841.2011.03.013

    PAN Xuetao, ZHANG Yafeng, MENG Fei, et al. Photo-electronic measuement system on geometry parameter of electric locomotive contact wire[J]. Instrument Technique and Sensor, 2011(3): 38-40,43. doi: 10.3969/j.issn.1002-1841.2011.03.013
    [12] 彭朝勇,王黎,高晓蓉,等. 接触网导线高度动态检测系统[J]. 光电工程,2004,31(增1): 91-93.

    PENG Chaoyong, WANG Li, GAO Xiaorong, et al. Dynamic detection for the height of contact wire[J]. Opto-Electronic Engineering, 2004, 31(S1): 91-93.
    [13] 谭德强,莫继良,彭金方,等. 高速接触网零部件失效问题研究现状及展望[J]. 西南交通大学学报,2018,53(3):610-619. doi: 10.3969/j.issn.0258-2724.2018.03.024

    TAN Deqiang, MO Jiliang, PENG Jinfang, et al. Research and prospect on high-speed catenary component failure[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 610-619. doi: 10.3969/j.issn.0258-2724.2018.03.024
    [14] 关金发,吴积钦,李岚. 弓网动态仿真技术的现状及展望[J]. 铁道学报,2015,37(10):35-41. doi: 10.3969/j.issn.1001-8360.2015.10.005

    GUAN Jinfa, WU Jiqin, LI Lan. The status and prospects of pantograph and catenary dynamic simulation technology[J]. Journal of the China Railway Society, 2015, 37(10): 35-41. doi: 10.3969/j.issn.1001-8360.2015.10.005
    [15] 胡艳,黄盼盼,马然,等. 简单链形悬挂接触网整体吊弦瞬态动力学性能研究[J]. 振动与冲击,2021,40(8):131-136.

    HU Yan, HUANG Panpan, MA Ran, et al. A study on the transient dynamic performance of integral dropper of simple chain suspension catenary[J]. Journal of Vibration and Shock, 2021, 40(8): 131-136.
    [16] European Committee for Electrotechnical Standardization. Railway applications-current collection systems-validation of simulation of the dynamic interaction between pantograph and overhead contact line: BS EN 50318[S]. Brussels: BSI Standards Limited, 2018.
    [17] 毕继红,陈花丽,任洪鹏. 基于雨流计数法的接触线疲劳寿命分析[J]. 铁道学报,2012,34(6):34-39. doi: 10.3969/j.issn.1001-8360.2012.06.007

    BI Jihong, CHEN Huali, REN Hongpeng. Analysis on fatigue life of contact wire based on rain-flow counting method[J]. Journal of the China Railway Society, 2012, 34(6): 34-39. doi: 10.3969/j.issn.1001-8360.2012.06.007
    [18] 陈立明. 高速受电弓作用下接触网整体吊弦动态力研究[J]. 中国铁道科学,2018,39(3):86-92. doi: 10.3969/j.issn.1001-4632.2018.03.12

    CHEN Liming. Study on dynamic force of integral dropper of catenary under action of high-speed pantograph[J]. China Railway Science, 2018, 39(3): 86-92. doi: 10.3969/j.issn.1001-4632.2018.03.12
    [19] 王伟. 高铁接触网吊弦疲劳特性研究[D]. 成都:西南交通大学,2014.
    [20] 董昭德. 接触网[M]. 北京:中国铁道出版社,2012.
    [21] 常丽,李丰良,年晓红. 武广高铁定位器坡度算法研究[J]. 铁道科学与工程学报,2014,11(2):131-135. doi: 10.3969/j.issn.1672-7029.2014.02.023

    CHANG Li, LI Fengliang, NIAN Xiaohong. Research on gradient algorithm of registration arm in Wuguang high-speed railway[J]. Journal of Railway Science and Engineering, 2014, 11(2):131-135. doi: 10.3969/j.issn.1672-7029.2014.02.023
    [22] 刘继冬,吴积钦,朱政,等. 大坡度条件下接触网机械计算研究[J]. 电气化铁道,2018,29(增1):71-75.
    [23] KOBAYASHI S, STOTEN D P, YAMASHITA Y, et al. Dynamically substructured testing of railway pantograph/catenary systems[J]. Journal of Rail and Rapid Transit, 2019, 233(5): 516-525. doi: 10.1177/0954409718799900
    [24] SONG Y, JIANG T J, RONNQUIST A, et al. The effects of spatially distributed damping on the contact force in railway pantograph-catenary interactions[J]. IEEE Transactions on Instrumentation Measurement, 2021, 70:3091459.1-3091459.10.
    [25] 韩烨. 基于计算机视觉的高铁接触网支持装置零部件分类提取与缺陷检测[D]. 成都:西南交通大学,2019.
    [26] SONG Y, LIU Z G, DUAN F C, et al. Wave propagation analysis in high-speed railway catenary system subjected to a moving pantograph[J]. Applied Mathematical Modelling, 2018, 59: 20-38. doi: 10.1016/j.apm.2018.01.001
    [27] 杨丽娟,张白桦,叶旭桢. 快速傅里叶变换FFT及其应用[J]. 光电工程,2004,31(增):1-3.

    ANG Lijuan,ZHANG Baihua,YE Xuzhen. Fast Fourier transform and its applications[J]. Opto-Electronic Engineering,2004,31(S):1-3.
    [28] ZHANG J W, WU J Q, CHEN W R, et al. Simulation method for dropper dynamic load considering horizontal vibration behaviour[J]. International Journal of Simulation Modelling, 2019, 18(4):620-631. doi: 10.2507/IJSIMM18(4)492
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  21
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-05-05
  • 网络出版日期:  2024-03-11

目录

    /

    返回文章
    返回