• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于重构距离向分谱法的时序InSAR电离层校正及分析

毛文飞 王晓文 刘国祥 杨友涛 向卫 蔡嘉伦 符茵 张瑞

毛文飞, 王晓文, 刘国祥, 杨友涛, 向卫, 蔡嘉伦, 符茵, 张瑞. 基于重构距离向分谱法的时序InSAR电离层校正及分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20210541
引用本文: 毛文飞, 王晓文, 刘国祥, 杨友涛, 向卫, 蔡嘉伦, 符茵, 张瑞. 基于重构距离向分谱法的时序InSAR电离层校正及分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20210541
MAO Wenfei, WANG Xiaowen, LIU Guoxiang, YANG Youtao, XIANG Wei, CAI Jialun, FU Yin, ZHANG Rui. Ionospheric Correction and Analysis for Time-series InSAR Based on Reformulating Range Split Spectrum Interferometry[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20210541
Citation: MAO Wenfei, WANG Xiaowen, LIU Guoxiang, YANG Youtao, XIANG Wei, CAI Jialun, FU Yin, ZHANG Rui. Ionospheric Correction and Analysis for Time-series InSAR Based on Reformulating Range Split Spectrum Interferometry[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20210541

基于重构距离向分谱法的时序InSAR电离层校正及分析

doi: 10.3969/j.issn.0258-2724.20210541
基金项目: 国家自然科学基金(41804009, 42071410, 41771402);四川省科技计划(2020YJ0322, 2020JDTD0003, 2018JY0664, 2019ZDZX0042, 2020JDTD0003, 2020YJ0322)
详细信息
    作者简介:

    毛文飞(1990—),男,博士研究生,研究方向为InSAR电离层估计与校正及形变监测与分析,E-mail:wenfeimao@my.swjtu.edu.cn

    通讯作者:

    张瑞(1982—),男,副教授,博士,研究方向为定量遥感和合成孔径雷达干涉测量,E-mail:zhangrui@swjtu.edu.cn

  • 中图分类号: P237

Ionospheric Correction and Analysis for Time-series InSAR Based on Reformulating Range Split Spectrum Interferometry

  • 摘要:

    合成孔径雷达干涉技术(InSAR)受电离层延迟影响较大,特别是在低高纬地区,用于时序InSAR解算的干涉对数量大大减少,严重影响了低频合成孔径雷达(SAR)系统的监测精度. 针对该问题,引入重构距离向分谱法(RRSSI),将其扩展为时序InSAR电离层误差估计与校正方法. 为测试方法性能,获取2006年6月至2010年8月间覆盖阿拉斯加Anaktuvuk河区域的ALOS-1 PALSAR数据进行实验. 实验结果表明:本文方法能够有效估计时序InSAR结果中的电离层误差,且对小空间尺度电离层扰动具有较高的敏感性;经提出方法校正后,研究区域的年平均形变速率均值从校正前的1.46 cm/a降至0.49 cm/a,而标准差则从1.16 cm/a降至0.65 cm/a,精度显著提升;选取时序点的累积形变由校正前的大幅波动变得更加平稳,更符合形变规律.

     

  • 图 1  时序InSAR电离层延迟估计与校正

    Figure 1.  Delay estimation and correction for time-series InSAR ionospheric

    图 2  研究区域及SAR数据覆盖范围

    Figure 2.  Study area and SAR data coverage

    图 3  电离层校正前后的重缠绕差分InSAR干涉图

    Figure 3.  Rewrapped differential InSAR interferograms before and after ionospheric correction

    图 4  年平均形变速率及统计

    Figure 4.  Average annual deformation rate and statistics

    图 5  时序点的累积形变曲线

    Figure 5.  Cumulative deformation curve of time series points

    图 6  RRSSI方法与RSSI方法的电离层校正对比

    Figure 6.  Comparison of ionospheric correction between RRSSI method and RSSI method

  • [1] WRIGHT P A, QUEGN S, WHEADON N S, et al. Faraday rotation effects on L-band spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(12):2735-2744.
    [2] PI X Q. Ionospheric effects on spaceborne synthetic aperture radar and a new capability of imaging the ionosphere from space[J]. Space Weather,2015,13(11):737-741.
    [3] MEYER F, BAMLER R, JAKOWSKI N, et al. The potential of low-frequency SAR systems for mapping ionospheric TEC distributions[J]. IEEE Geoscience and Remote Sensing Letters,2006,3(4):560-564.
    [4] MAO W F, LIU G X, WANG X W, et al. An InSAR ionospheric correction method based on variance component estimation with integration of MAI and RSS measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:1423-1433. doi: 10.1109/JSTARS.2020.3045267
    [5] ZHANG B C, DING X L, ZHU W, et al. Mitigating ionospheric artifacts in coseismic interferogram based on offset field derived from ALOS-PALSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(7):3050-3059. doi: 10.1109/JSTARS.2016.2533441
    [6] KAZUO O C. Recent trend and advance of synthetic aperture radar with selected topics[J]. Remote Sensing,2013,5(2):716-807.
    [7] ROTT H. Advances in interferometric synthetic aperture radar (InSAR) in earth system science[J]. Progress in Physical Geography: Earth and Environment,2009,33(6):769-791. doi: 10.1177/0309133309350263
    [8] 刘国祥,陈强,罗小军,等. InSAR原理与应用[M]. 北京: 科学出版社, 2019.
    [9] AOKI Y, FURUYA M, DE ZAN F, et al. L-band synthetic aperture radar: current and future applications to earth sciences[J]. Earth, Planets and Space,2021,73(1):1-4. doi: 10.1186/s40623-020-01323-x
    [10] RAUCOULES D, DE MICHELE M. Assessing ionospheric influence on L-band SAR data: implications on coseismic displacement measurements of the 2008 Sichuan earthquake[J]. IEEE Geoscience and Remote Sensing Letters,2010,7(2):286-290.
    [11] JUNG H S, LEE D T, LU Z, et al. Ionospheric correction of SAR interferograms by multiple-aperture interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(5):3191-3199. doi: 10.1109/TGRS.2012.2218660
    [12] WEGMULLER U, STROZZI T, WERNER C. Ionospheric path delay estimation using split-beam interferometry[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 2012: 3631-3634.
    [13] FREEMAN A F. Calibration of linearly polarized polarimetric SAR data subject to faraday rotation[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1617-1624.
    [14] ZHU W, JUNG H S, CHEN J Y. Synthetic aperture radar interferometry (InSAR) ionospheric correction based on faraday rotation: two case studies[J]. Applied Sciences,2019,9(18):3871.1-3871.19.
    [15] GOMBA G, PARIZZI A, DE ZAN F, et al. Toward operational compensation of ionospheric effects in SAR interferograms: the split-spectrum method[J]. IEEE Transactions on Geoscience and Remote Sensing,2015,54(3):1446-1461.
    [16] FATTAHI H, SIMONS M, AGRAM P. InSAR time-series estimation of the ionospheric phase delay: an extension of the split range-spectrum technique[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(10):5984-5996.
    [17] GOMBA G, DE ZAN F, PARIZZI A. Ionospheric phase screen and ionospheric azimuth shift estimation combining the split-spectrum and multi-squint methods[C]//Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar. Hamburg: VDE, 2016: 1-4.
    [18] LIANG C R, LIU Z, FIELDING E J, et al. InSAR time series analysis of L-band wide-swath SAR data acquired by ALOS-2[J]. IEEE Transactions on Geoscience and Remote Sensing,2018,56(8):4492-4506. doi: 10.1109/TGRS.2018.2821150
    [19] LIANG C R, AGRAM P, SIMONS M, et al. Ionospheric correction of InSAR time series analysis of C-band sentinel-1 TOPS data[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(9):6755-6773.
    [20] WEGMÜLLER U, WERNER C, FREY O, et al. Reformulating the split-spectrum method to facilitate the estimation and compensation of the ionospheric phase in SAR interferograms[J]. Procedia Computer Science,2018,138:318-325. doi: 10.1016/j.procs.2018.10.045
    [21] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
    [22] ZHANG Y, FATTAHI H, AMELUNG F. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction[J]. Computers & Geosciences,2019,133:104331.1-104331.29.
    [23] JONES B M, KOLDEN C A, JANDT R, et al. Fire behavior, weather, and burn severity of the 2007 anaktuvuk river tundra fire, north slope, Alaska[J]. Arctic, Antarctic, and Alpine Research,2009,41(3):309-316. doi: 10.1657/1938-4246-41.3.309
    [24] LIU L, JAFAROV E E, SCHAEFER K M, et al. InSAR detects increase in surface subsidence caused by an Arctic tundra fire[J]. Geophysical Research Letters,2014,41(11):3906-3913. doi: 10.1002/2014GL060533
    [25] LIAO H. Ionospheric correction of interferometric sar data with application to the cryospheric sciences[D]. Alaska Fairbanks: University of Alaska Fairbanks, 2018.
    [26] ZHANG B. Mitigation of ionospheric artifacts in InSAR data for estimating earthquake deformation[D]. Hong Kong: The Hong Kong Polytechnic University, 2020.
  • 加载中
图(6)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  14
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 录用日期:  2024-03-04
  • 修回日期:  2022-01-07
  • 网络出版日期:  2024-03-20

目录

    /

    返回文章
    返回